In this paper a general model for the analysis of concrete as multiphase porous material, based on the so-called Hybrid Mixture Theory, is presented. The development of the model equations, taking into account both bulk phases and interfaces of the multiphase system is described, starting from the microscopic scale. An exploration of the second law of thermodynamics is also presented: it allows defining several quantities used in the model, like capillary pressure, disjoining pressure or effective stress, and to obtain some thermodynamic restrictions imposed on the evolution equations describing the material deterioration. Then, two specific forms of the general model adapted to the case of concrete at early ages and beyond and to the case of concrete structures under fire are shown. Some numerical simulations aimed to prove the validity of the approach adopted also are presented and discussed.

Modeling cementitious materials as multiphase porous media: theoretical framework and applications

PESAVENTO, FRANCESCO;
2008

Abstract

In this paper a general model for the analysis of concrete as multiphase porous material, based on the so-called Hybrid Mixture Theory, is presented. The development of the model equations, taking into account both bulk phases and interfaces of the multiphase system is described, starting from the microscopic scale. An exploration of the second law of thermodynamics is also presented: it allows defining several quantities used in the model, like capillary pressure, disjoining pressure or effective stress, and to obtain some thermodynamic restrictions imposed on the evolution equations describing the material deterioration. Then, two specific forms of the general model adapted to the case of concrete at early ages and beyond and to the case of concrete structures under fire are shown. Some numerical simulations aimed to prove the validity of the approach adopted also are presented and discussed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2440864
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 37
social impact