α-Lactalbumin (LA) forms with oleic acid (OA) a complex which has been reported to induce the selective death of tumor cells. However, the mechanism by which this complex kills a wide range of tumor cell lines is as yet largely unknown. The difficulty in rationalizing the cytotoxic effects of the LA/OA complex can be due to the fact that the molecular aspects of the interaction between the protein and the fatty acid are still poorly understood, in particular regarding the oligomeric state of the protein and the actual molar ratio of OA over protein in the complex. Here, the effect of LA addition to an OA aqueous solution has been examined by dynamic light scattering measurements and transmission electron microscopy. Upon protein addition, the aggregation state of the rather insoluble OA is dramatically changed, and more water-soluble and smaller aggregates of the fatty acid are formed. A mixture of LA and an excess of OA forms a high molecular weight complex that can be isolated by size-exclusion chromatography and that displays cellular toxicity toward Jurkat cells. On the basis of gel filtration data, cross-linking experiments with glutaraldehyde, and OA titration, we evaluated that the isolated LA/OA complex is given by 4-5 protein molecules that bind 68-85 OA molecules. The protein in the complex adopts a molten globule-like conformation, and it interacts with the fatty acid mostly through its α-helical domain, as indicated by circular dichroism measurements and limited proteolysis experiments. Overall, we interpret our and previous data as indicating that the cellular toxicity of a LA/OA complex is due to the effect of a protein moiety in significantly enhancing the water solubility of the cytotoxic OA and, therefore, that the protein/OA complex can serve mainly as a carrier of the toxic fatty acid in a physiological milieu.

Alpha-lactalbumin forms with oleic acid a high molecular weight complex displaying cytotoxic activity

SPOLAORE, BARBARA;PINATO, ODRA;CANTON, MARCELLA;POLVERINO DE LAURETO, PATRIZIA;FONTANA, ANGELO
2010

Abstract

α-Lactalbumin (LA) forms with oleic acid (OA) a complex which has been reported to induce the selective death of tumor cells. However, the mechanism by which this complex kills a wide range of tumor cell lines is as yet largely unknown. The difficulty in rationalizing the cytotoxic effects of the LA/OA complex can be due to the fact that the molecular aspects of the interaction between the protein and the fatty acid are still poorly understood, in particular regarding the oligomeric state of the protein and the actual molar ratio of OA over protein in the complex. Here, the effect of LA addition to an OA aqueous solution has been examined by dynamic light scattering measurements and transmission electron microscopy. Upon protein addition, the aggregation state of the rather insoluble OA is dramatically changed, and more water-soluble and smaller aggregates of the fatty acid are formed. A mixture of LA and an excess of OA forms a high molecular weight complex that can be isolated by size-exclusion chromatography and that displays cellular toxicity toward Jurkat cells. On the basis of gel filtration data, cross-linking experiments with glutaraldehyde, and OA titration, we evaluated that the isolated LA/OA complex is given by 4-5 protein molecules that bind 68-85 OA molecules. The protein in the complex adopts a molten globule-like conformation, and it interacts with the fatty acid mostly through its α-helical domain, as indicated by circular dichroism measurements and limited proteolysis experiments. Overall, we interpret our and previous data as indicating that the cellular toxicity of a LA/OA complex is due to the effect of a protein moiety in significantly enhancing the water solubility of the cytotoxic OA and, therefore, that the protein/OA complex can serve mainly as a carrier of the toxic fatty acid in a physiological milieu.
2010
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2441095
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 53
  • ???jsp.display-item.citation.isi??? 51
  • OpenAlex ND
social impact