Bioinformatic approaches have allowed the identification of twenty genes, grouped into three subfamilies, encoding for homologues of animal ionotropic glutamate receptors (iGLRs) in the Arabidopsis thaliana model plant. Indirect evidence suggests that plant iGLRs function as non-selective cation channels. In the present work we provide biochemical and electrophysiological evidences for the chloroplast localization of glutamate receptor(s) of family 3 (iGLR3) in spinach. A specific antibody, recognizing putative receptors of family 3 locates iGLR3 to the inner envelope membrane of chloroplasts. In planar lipid bilayer experiments, purified inner envelope vesicles from spinach display a cation-selective electrophysiological activity which is inhibited by DNQX (6,7-dinitroquinoxaline-2,3-dione), considered to act as an inhibitor on both animal and plant iGLRs. These results identify for the first time the intracellular localization of plant glutamate receptor(s) and a DNQX-sensitive, glutamate-gated activity at single channel level in native membrane with properties compatible with those predicted for plant glutamate receptors.

Characterization of a plant glutamate receptor activity

TEARDO, ENRICO;SEGALLA, ANNA;FORMENTIN, ELIDE;ZANETTI, MANUELA;MARIN, ORIANO;GIACOMETTI, GIORGIO;LO SCHIAVO, FIORELLA;ZORATTI, MARIO;SZABO', ILDIKO'
2010

Abstract

Bioinformatic approaches have allowed the identification of twenty genes, grouped into three subfamilies, encoding for homologues of animal ionotropic glutamate receptors (iGLRs) in the Arabidopsis thaliana model plant. Indirect evidence suggests that plant iGLRs function as non-selective cation channels. In the present work we provide biochemical and electrophysiological evidences for the chloroplast localization of glutamate receptor(s) of family 3 (iGLR3) in spinach. A specific antibody, recognizing putative receptors of family 3 locates iGLR3 to the inner envelope membrane of chloroplasts. In planar lipid bilayer experiments, purified inner envelope vesicles from spinach display a cation-selective electrophysiological activity which is inhibited by DNQX (6,7-dinitroquinoxaline-2,3-dione), considered to act as an inhibitor on both animal and plant iGLRs. These results identify for the first time the intracellular localization of plant glutamate receptor(s) and a DNQX-sensitive, glutamate-gated activity at single channel level in native membrane with properties compatible with those predicted for plant glutamate receptors.
File in questo prodotto:
File Dimensione Formato  
000320525.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 1.22 MB
Formato Adobe PDF
1.22 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2441322
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 27
social impact