In tumours, polyamines and amine oxidases increase as compared to normal tissues. Cytotoxicity induced by bovine serum amine oxidase (BSAO) and spermine is attributed to H2O2 and aldehydes produced by the reaction. Increasing the incubation temperature from 37 to 42 degrees C enhances cytotoxicity in cells exposed to spermine metabolites. The combination BSAO/spermine prevents tumour growth, particularly well if the enzyme has been conjugated with a biocompatible hydrogel polymer. Since the tumour cells release endogenous substrates of BSAO, the administration of spermine is not required. Combination with hyperthermia improves the cytocidal effect of polyamines oxidation products. Our findings show that multidrug resistant (MDR) cells are more sensitive to spermine metabolites than their wild-type counterparts, due to an increased mitochondrial activity which induces the generation of intracellular ROS prior to the onset of mitochondrial permeability transition (MPT). It makes this new approach attractive, since the development of MDR is one of the major problems of conventional cancer therapy.

The physiological role of biogenic amines redox reactions in mitochondria. New perspectives in cancer therapy.

SALVI, MAURO;BATTAGLIA, VALENTINA;TONINELLO, ANTONIO;
2007

Abstract

In tumours, polyamines and amine oxidases increase as compared to normal tissues. Cytotoxicity induced by bovine serum amine oxidase (BSAO) and spermine is attributed to H2O2 and aldehydes produced by the reaction. Increasing the incubation temperature from 37 to 42 degrees C enhances cytotoxicity in cells exposed to spermine metabolites. The combination BSAO/spermine prevents tumour growth, particularly well if the enzyme has been conjugated with a biocompatible hydrogel polymer. Since the tumour cells release endogenous substrates of BSAO, the administration of spermine is not required. Combination with hyperthermia improves the cytocidal effect of polyamines oxidation products. Our findings show that multidrug resistant (MDR) cells are more sensitive to spermine metabolites than their wild-type counterparts, due to an increased mitochondrial activity which induces the generation of intracellular ROS prior to the onset of mitochondrial permeability transition (MPT). It makes this new approach attractive, since the development of MDR is one of the major problems of conventional cancer therapy.
2007
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2442035
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 38
social impact