The inner mitochondrial membrane is famously impermeable to solutes not provided with a specific carrier. When this impermeability is lost, either in a developmental context or under stress, the consequences for the cell can be far-reaching. Permeabilization of isolated mitochondria, studied since the early days of the field, is often discussed as if it were a biochemically well-defined phenomenon, occurring by a unique mechanism. On the contrary, evidence has been accumulating that it may be the common outcome of several distinct processes, involving different proteins or protein complexes, depending on circumstances. A clear definition of this putative variety is a prerequisite for an understanding of mitochondrial permeabilization within cells, of its roles in the life of organisms, and of the possibilities for pharmacological intervention.
Titolo: | Mitochondrial permeability transitions: how many doors to the house? |
Autori: | |
Data di pubblicazione: | 2005 |
Rivista: | |
Abstract: | The inner mitochondrial membrane is famously impermeable to solutes not provided with a specific carrier. When this impermeability is lost, either in a developmental context or under stress, the consequences for the cell can be far-reaching. Permeabilization of isolated mitochondria, studied since the early days of the field, is often discussed as if it were a biochemically well-defined phenomenon, occurring by a unique mechanism. On the contrary, evidence has been accumulating that it may be the common outcome of several distinct processes, involving different proteins or protein complexes, depending on circumstances. A clear definition of this putative variety is a prerequisite for an understanding of mitochondrial permeabilization within cells, of its roles in the life of organisms, and of the possibilities for pharmacological intervention. |
Handle: | http://hdl.handle.net/11577/2444071 |
Appare nelle tipologie: | 01.01 - Articolo in rivista |