The method, recently developed to include van der Waals interactions in the density functional theory by using the maximally localized Wannier functions, is extended to the case of atoms and fragments weakly bonded (physisorbed) to metal and semimetal surfaces, thus opening the way to realistic simulations of surface-physics processes, where van der Waals interactions play a key role. Successful applications to the case of Ar on graphite and of Ar, He, and H(2) on the Al(100) surface are presented.

Van der Waals interactions at surfaces by density functional theory using Wannier functions

SILVESTRELLI, PIER LUIGI;BENYAHIA, KARIMA;GRUBISIC, SONJA;ANCILOTTO, FRANCESCO;TOIGO, FLAVIO
2009

Abstract

The method, recently developed to include van der Waals interactions in the density functional theory by using the maximally localized Wannier functions, is extended to the case of atoms and fragments weakly bonded (physisorbed) to metal and semimetal surfaces, thus opening the way to realistic simulations of surface-physics processes, where van der Waals interactions play a key role. Successful applications to the case of Ar on graphite and of Ar, He, and H(2) on the Al(100) surface are presented.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2445993
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 48
social impact