The effects of interference in the setup of wireless sensor networks (WSNs) represent a critical issue, and as such, it needs to be carefully addressed. To this aim, helpful information can be achieved through measurements to be carried out in advance on suitable prototypes and testbeds. In this paper, the measurement of industrial WSN performance is dealt with. In particular, a suitable testbed enlisting IEEE 802.15.4 wireless sensor nodes is presented along with the results of some experiments carried out even in the presence of interference. The purpose is to show how to evaluate some specific parameters of a WSN employed for industrial applications to obtain useful information for its setup optimization in the presence of interference. The analysis will show that from the measurement of these parameters (number of failed pollings, polling round-trip time, experimental cycle time, and alarm latency), interference effects can effectively be recognized, and the network setup can be optimized.

Experimental characterization of wireless sensor networks for industrial applications

BERTOCCO, MATTEO;GAMBA, GIOVANNI;SONA, ALESSANDRO;
2008

Abstract

The effects of interference in the setup of wireless sensor networks (WSNs) represent a critical issue, and as such, it needs to be carefully addressed. To this aim, helpful information can be achieved through measurements to be carried out in advance on suitable prototypes and testbeds. In this paper, the measurement of industrial WSN performance is dealt with. In particular, a suitable testbed enlisting IEEE 802.15.4 wireless sensor nodes is presented along with the results of some experiments carried out even in the presence of interference. The purpose is to show how to evaluate some specific parameters of a WSN employed for industrial applications to obtain useful information for its setup optimization in the presence of interference. The analysis will show that from the measurement of these parameters (number of failed pollings, polling round-trip time, experimental cycle time, and alarm latency), interference effects can effectively be recognized, and the network setup can be optimized.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2448530
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 61
  • ???jsp.display-item.citation.isi??? 51
social impact