The chemokine receptor CXCR4 plays a central role in organ-specific homing and tumor spreading and is induced by hypoxia. B lymphocytes are exposed to low oxygen tensions during their development, but the influence of hypoxia on their physiology is poorly understood. Here, we show that hypoxia is associated with up-regulation of CXCR4 expression in human normal and malignant B cells, through both transcriptional and posttranslational mechanisms. However, a dichotomic functional response to CXCR4 triggering was observed: both peripheral B cells and lymphomas arising from mature B cells displayed increased responses to CXCR4 triggering under hypoxia, whereas germinal center (GC) B cells as well as GC-derived lymphomas showed CXCR4 receptor desensitization. This phenomenon was associated with differential modulation of key signal-transducing molecules, including mitogen-activated protein kinase phosphatase-1 and regulator of G protein signaling molecule-1. The unresponsiveness of GC-derived lymphomatous B cells to CXCR4 triggering under hypoxia may have implications for the development and pathogenesis of GC-derived lymphoid tumors.

Differential regulation of hypoxia-induced CXCR4 triggering during B-cell development and lymphomagenesis

PIOVAN, ERICH;INDRACCOLO S;PERSANO L;AMADORI, ALBERTO
2007

Abstract

The chemokine receptor CXCR4 plays a central role in organ-specific homing and tumor spreading and is induced by hypoxia. B lymphocytes are exposed to low oxygen tensions during their development, but the influence of hypoxia on their physiology is poorly understood. Here, we show that hypoxia is associated with up-regulation of CXCR4 expression in human normal and malignant B cells, through both transcriptional and posttranslational mechanisms. However, a dichotomic functional response to CXCR4 triggering was observed: both peripheral B cells and lymphomas arising from mature B cells displayed increased responses to CXCR4 triggering under hypoxia, whereas germinal center (GC) B cells as well as GC-derived lymphomas showed CXCR4 receptor desensitization. This phenomenon was associated with differential modulation of key signal-transducing molecules, including mitogen-activated protein kinase phosphatase-1 and regulator of G protein signaling molecule-1. The unresponsiveness of GC-derived lymphomatous B cells to CXCR4 triggering under hypoxia may have implications for the development and pathogenesis of GC-derived lymphoid tumors.
2007
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2449228
Citazioni
  • ???jsp.display-item.citation.pmc??? 21
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 37
social impact