In the engineering practice meshing and re-meshing complex domains by Finite Elements (FE) is one of the most time-consuming efforts. Meshless methods avoid this task but are computationally more expensive than standard FE. A somewhat natural improvement can be attempted by combining the two techniques with the aim at emphasizing the respective merits. The present work describes a FE enrichment by the Meshless Local Petrov-Galerkin (MLPG) method. The basic idea is to add a limited number of moving MLPG points over a fixed coarse FE grid, in order to improve the solution accuracy in specific regions of the domain with no mesh refinements. The transient Poisson equation is used as a test problem, with the numerical convergence of the enriched FE-MLPG method verified in several cases. The enriched approach proves more accurate than standard FE even by a factor 15 with a small number of MLPG nodes added.

A Finite Element enrichment technique by the Meshless Local Petrov-Galerkin method

FERRONATO, MASSIMILIANO;MAZZIA, ANNAMARIA;PINI, GIORGIO
2010

Abstract

In the engineering practice meshing and re-meshing complex domains by Finite Elements (FE) is one of the most time-consuming efforts. Meshless methods avoid this task but are computationally more expensive than standard FE. A somewhat natural improvement can be attempted by combining the two techniques with the aim at emphasizing the respective merits. The present work describes a FE enrichment by the Meshless Local Petrov-Galerkin (MLPG) method. The basic idea is to add a limited number of moving MLPG points over a fixed coarse FE grid, in order to improve the solution accuracy in specific regions of the domain with no mesh refinements. The transient Poisson equation is used as a test problem, with the numerical convergence of the enriched FE-MLPG method verified in several cases. The enriched approach proves more accurate than standard FE even by a factor 15 with a small number of MLPG nodes added.
2010
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2449239
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 6
social impact