We discuss finiteness properties of a profinite group G whose probabilistic zeta function P(G,s) is rational. In particular we prove that if P(G,s) is rational and G has a finite number of non-alternating and non-abelian composition factors in a given composition series, then G/Frat(G) is finite.
Non-prosoluble profinite groups with a rational probabilistic zeta function
DETOMI, ELOISA MICHELA;LUCCHINI, ANDREA
2007
Abstract
We discuss finiteness properties of a profinite group G whose probabilistic zeta function P(G,s) is rational. In particular we prove that if P(G,s) is rational and G has a finite number of non-alternating and non-abelian composition factors in a given composition series, then G/Frat(G) is finite.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
rational2.pdf
accesso aperto
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Accesso gratuito
Dimensione
134.52 kB
Formato
Adobe PDF
|
134.52 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.