Since red blood cells (RBCs) lack nuclei and organelles, cell membrane is their main load-bearing component and, according to a dynamic interaction with the cytoskeleton compartment, plays a pivotal role in their functioning. Even if erythrocyte membranes are available in large quantities, the low abundance and the hydrophobic nature of cell membrane proteins complicate their purification and detection by conventional 2D gel-based proteomic approaches. So, in order to increase the efficiency of RBC membrane proteome identification, here we took advantage of a simple and reproducible membrane sub-fractionation method coupled to Multidimensional Protein Identification Technology (MudPIT). In addition, the adoption of a stringent RBC filtration strategy from the whole blood, permitted to remove exhaustively contaminants, such as platelets and white blood cells, and to identify a total of 275 proteins in the three RBC membrane fractions collected and analysed. Finally, by means of software for the elaboration of the great quantity of data obtained and programs for statistical analysis and protein classification, it was possible to determine the validity of the entire system workflow and to assign the proper sub-cellular localization and function for the greatest number of the identified proteins.

Extraction methods of red blood cell membrane proteins for Multidimensional Protein Identification Technology (MudPIT) analysis

ROVERI, ANTONELLA;ZACCARIN, MATTIA;URSINI, FULVIO;
2010

Abstract

Since red blood cells (RBCs) lack nuclei and organelles, cell membrane is their main load-bearing component and, according to a dynamic interaction with the cytoskeleton compartment, plays a pivotal role in their functioning. Even if erythrocyte membranes are available in large quantities, the low abundance and the hydrophobic nature of cell membrane proteins complicate their purification and detection by conventional 2D gel-based proteomic approaches. So, in order to increase the efficiency of RBC membrane proteome identification, here we took advantage of a simple and reproducible membrane sub-fractionation method coupled to Multidimensional Protein Identification Technology (MudPIT). In addition, the adoption of a stringent RBC filtration strategy from the whole blood, permitted to remove exhaustively contaminants, such as platelets and white blood cells, and to identify a total of 275 proteins in the three RBC membrane fractions collected and analysed. Finally, by means of software for the elaboration of the great quantity of data obtained and programs for statistical analysis and protein classification, it was possible to determine the validity of the entire system workflow and to assign the proper sub-cellular localization and function for the greatest number of the identified proteins.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2450294
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 26
social impact