Although it is widely accepted that mitochondria in living cells can efficiently uptake Ca(2+) during stimulation because of their vicinity to microdomains of high [Ca(2+)], the direct proof of Ca(2+) hot spots' existence is still lacking. Thanks to a GFP-based Ca(2+) probe localized on the cytosolic surface of the outer mitochondrial membrane, we demonstrate that, upon Ca(2+) mobilization, the [Ca(2+)] in small regions of the mitochondrial surface reaches levels 5- to 10-fold higher than in the bulk cytosol. We also show that the [Ca(2+)] to which mitochondria are exposed during capacitative Ca(2+) influx is similar between near plasma membrane mitochondria and organelles deeply located in the cytoplasm, whereas it is 2- to 3-fold higher in subplasma membrane mitochondria upon activation of voltage-gated Ca(2+) channels. These results demonstrate that mitochondria are exposed to Ca(2+) hot spots close to the ER but are excluded from the regions where capacitative Ca(2+) influx occurs.
Titolo: | Ca2+ Hot Spots on the Mitochondrial Surface Are Generated by Ca2+ Mobilization from Stores, but Not by Activation of Store-Operated Ca2+ Channels | |
Autori: | ||
Data di pubblicazione: | 2010 | |
Rivista: | ||
Abstract: | Although it is widely accepted that mitochondria in living cells can efficiently uptake Ca(2+) during stimulation because of their vicinity to microdomains of high [Ca(2+)], the direct proof of Ca(2+) hot spots' existence is still lacking. Thanks to a GFP-based Ca(2+) probe localized on the cytosolic surface of the outer mitochondrial membrane, we demonstrate that, upon Ca(2+) mobilization, the [Ca(2+)] in small regions of the mitochondrial surface reaches levels 5- to 10-fold higher than in the bulk cytosol. We also show that the [Ca(2+)] to which mitochondria are exposed during capacitative Ca(2+) influx is similar between near plasma membrane mitochondria and organelles deeply located in the cytoplasm, whereas it is 2- to 3-fold higher in subplasma membrane mitochondria upon activation of voltage-gated Ca(2+) channels. These results demonstrate that mitochondria are exposed to Ca(2+) hot spots close to the ER but are excluded from the regions where capacitative Ca(2+) influx occurs. | |
Handle: | http://hdl.handle.net/11577/2452492 | |
Appare nelle tipologie: | 01.01 - Articolo in rivista |