A procedure for enzyme entrapment into matrices suitable for biocatalytic applications is reported. The method, which takes advantage of the stable formation of polyvinyl alcohol (PVA) hydrogels by freezing and thawing PVA aqueous solutions, was assayed using lipase as model enzyme. The leakage of lipase was minimised by using high molecular weight PVA and by previous conjugation of the enzyme to PEG. The immobilised PEG enzyme maintained its catalytic activity in organic solvents also, thus allowing enzymatic activity towards water insoluble substrates. The activity was largely increased reducing the diffusional constrain by cutting the matrices into slices of micron size. Matrix-entrapped lipase-PEG, when used in the hydrolysis of acetoxycoumarins, showed a conversion rate of about 10 times lower than the enzyme-PEG in the free form, and maintained regioselectivity when a diacetylated product was used as substrate. (C) 2001 Elsevier Science B.V. All rights reserved.

Pegylated enzyme entrapped in poly(vinyl alcohol) hydrogel for biocatalytic application

MAMMUCARI, CRISTINA;SCHIAVON, ODDONE;CHILIN, ADRIANA;GUIOTTO, ADRIANO
2001

Abstract

A procedure for enzyme entrapment into matrices suitable for biocatalytic applications is reported. The method, which takes advantage of the stable formation of polyvinyl alcohol (PVA) hydrogels by freezing and thawing PVA aqueous solutions, was assayed using lipase as model enzyme. The leakage of lipase was minimised by using high molecular weight PVA and by previous conjugation of the enzyme to PEG. The immobilised PEG enzyme maintained its catalytic activity in organic solvents also, thus allowing enzymatic activity towards water insoluble substrates. The activity was largely increased reducing the diffusional constrain by cutting the matrices into slices of micron size. Matrix-entrapped lipase-PEG, when used in the hydrolysis of acetoxycoumarins, showed a conversion rate of about 10 times lower than the enzyme-PEG in the free form, and maintained regioselectivity when a diacetylated product was used as substrate. (C) 2001 Elsevier Science B.V. All rights reserved.
2001
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2455187
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 25
social impact