Nitrosopropofol (NOPR) is a relatively stable compound obtained from the reaction between the general anesthetic 2,6 diisopropylphenol (propofol) and nitrosoglutathione (GSNO) and bearing a more acidic phenol group than propofol. It interfered with mitochondrial energetic metabolism in a concentration-dependent manner. Concentrations as high as 100 or 200 microM disrupted both oxidative phosphorylation and electron transport. Low concentrations of NOPR (50 microM) markedly slowed down the electron transport rate which was insensitive both to ADP and uncoupler stimulation and spontaneously gradually stopped. Consequently, both the transmembrane potential production and the ATP synthesis system were affected. In the presence of 10 or 20 microM NOPR, mitochondria respired but showed a worsening of the respiratory control and produced a transmembrane potential useful to respond to a phosphorylation pulse, but were not able to restore it. These results were consistent with ATP synthesis and swelling experiments. NOPR was effective at concentrations lower than those required by the combination of propofol and GSNO, suggesting that mitochondria might be able to catalyze the reaction between GSNO and propofol and that the resulting metabolite was more active on mitochondrial membrane structure than the parent compounds. Although the details of the process are yet unknown, the mechanism presented may be of potential relevance to rationalize the pathophysiological effects of propofol.

Effects of nitrosopropofol on mitochondrial energy-converting system

RIGOBELLO, MARIA PIA;BINDOLI, ALBERTO;VINCENTI, EZIO;SCUTARI, GUIDO
2002

Abstract

Nitrosopropofol (NOPR) is a relatively stable compound obtained from the reaction between the general anesthetic 2,6 diisopropylphenol (propofol) and nitrosoglutathione (GSNO) and bearing a more acidic phenol group than propofol. It interfered with mitochondrial energetic metabolism in a concentration-dependent manner. Concentrations as high as 100 or 200 microM disrupted both oxidative phosphorylation and electron transport. Low concentrations of NOPR (50 microM) markedly slowed down the electron transport rate which was insensitive both to ADP and uncoupler stimulation and spontaneously gradually stopped. Consequently, both the transmembrane potential production and the ATP synthesis system were affected. In the presence of 10 or 20 microM NOPR, mitochondria respired but showed a worsening of the respiratory control and produced a transmembrane potential useful to respond to a phosphorylation pulse, but were not able to restore it. These results were consistent with ATP synthesis and swelling experiments. NOPR was effective at concentrations lower than those required by the combination of propofol and GSNO, suggesting that mitochondria might be able to catalyze the reaction between GSNO and propofol and that the resulting metabolite was more active on mitochondrial membrane structure than the parent compounds. Although the details of the process are yet unknown, the mechanism presented may be of potential relevance to rationalize the pathophysiological effects of propofol.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2459162
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 14
social impact