With Monte Carlo simulation we study closed self-avoiding surfaces (SAS) of arbitrary genus on a cubic lattice. The gyration radius and entropic exponents are nu=0.506 +/- 0.005 and theta=1.50 +/- 0.06, respectively. Thus, SAS behave like lattice animals (LA) or branched polymers at criticality. This result, contradicting previous conjectures, is due to a mechanism of geometrical redundancy, which is tested by exact renormalization on a hierarchical vesicle model. By mapping SAS into restricted interacting site LA, we conjecture nu(THETA)=1/2 , phi(THETA)=1, and theta(THETA)=3/2 at the LA theta point.

Self-avoiding surfaces, topology, and lattice animals

STELLA, ATTILIO;ORLANDINI, ENZO;
1992

Abstract

With Monte Carlo simulation we study closed self-avoiding surfaces (SAS) of arbitrary genus on a cubic lattice. The gyration radius and entropic exponents are nu=0.506 +/- 0.005 and theta=1.50 +/- 0.06, respectively. Thus, SAS behave like lattice animals (LA) or branched polymers at criticality. This result, contradicting previous conjectures, is due to a mechanism of geometrical redundancy, which is tested by exact renormalization on a hierarchical vesicle model. By mapping SAS into restricted interacting site LA, we conjecture nu(THETA)=1/2 , phi(THETA)=1, and theta(THETA)=3/2 at the LA theta point.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2459275
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 19
social impact