Potassium is an essential nutrient which plays an important role in many aspects of plant growth and development. Plants have developed a number of highly specific mechanisms to take up potassium from the soil; these include the expression of K(+) transporters and potassium channels in root cells. Despite the fact that root epidermal and hair cells are in direct contact with the soil, the role of these tissues in K(+) uptake is not well understood. Here we report the molecular cloning and functional characterization of a novel potassium channel KDC1 which forms part of a new subfamily of plant K(in) channels. Kdc1 was isolated from carrot root RNA and in situ hybridization experiments show Kdc1 to be highly expressed in root hair cells. Expressing the KDC1 protein in Chinese hamster ovary cells identified it as a voltage and pH-dependent inwardly rectifying potassium channel. An electrophysiological analysis of carrot root hair protoplasts confirmed the biophysical properties of the Kdc1 gene product (KDC1) in the heterologous expression system. KDC1 thus represents a major K(+) uptake channel in carrot root hair cells.

KDC1 , a novel carrot root hair K+ channel. Cloning characterization and expression in mammalian cells

SZABO', ILDIKO';NEGRO, ALESSANDRO;TERZI, MARIO;LO SCHIAVO, FIORELLA
2000

Abstract

Potassium is an essential nutrient which plays an important role in many aspects of plant growth and development. Plants have developed a number of highly specific mechanisms to take up potassium from the soil; these include the expression of K(+) transporters and potassium channels in root cells. Despite the fact that root epidermal and hair cells are in direct contact with the soil, the role of these tissues in K(+) uptake is not well understood. Here we report the molecular cloning and functional characterization of a novel potassium channel KDC1 which forms part of a new subfamily of plant K(in) channels. Kdc1 was isolated from carrot root RNA and in situ hybridization experiments show Kdc1 to be highly expressed in root hair cells. Expressing the KDC1 protein in Chinese hamster ovary cells identified it as a voltage and pH-dependent inwardly rectifying potassium channel. An electrophysiological analysis of carrot root hair protoplasts confirmed the biophysical properties of the Kdc1 gene product (KDC1) in the heterologous expression system. KDC1 thus represents a major K(+) uptake channel in carrot root hair cells.
2000
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2460122
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 41
social impact