Unilateral injection into the right substantia nigra of the catecholaminergic neurotoxin 6-hydroxydopamine (6-OHDA) produces extensive loss of dopaminergic cells ('hemi-parkinsonian rat'). The pineal hormone melatonin, which is a potent antioxidant against different reactive oxygen species and has been reported to be neuroprotective in vivo and in vitro, was evaluated for potential anti-Parkinson effects in this model. Imbalance in dopaminergic innervation between the striata produced by intranigral administration of 6-OHDA results in a postural asymmetry causing rotation away from the nonlesioned side. Melatonin given systemically prevented apomorphine-induced circling behavior in 6-OHDA-lesioned rats. Reduced activity of mitochondrial oxidative phosphorylation enzymes has been suggested in some neurodegenerative diseases; in particular, selective decrease in complex I activity is observed in the substantia nigra of Parkinson's disease patients. Analysis of mitochondrial oxidative phosphorylation enzyme activities in nigral tissue from 6-OHDA-lesioned rats by a novel BN-PAGE histochemical procedure revealed a clear loss of complex I activity, which was protected against in melatonin-treated animals. A good correlation between behavioral parameters and enzymatic (complex I) analysis was observed independent of melatonin administration. A deficit in mitochondrial complex I could conceivably contribute to cell death in parkinsonism via free radical mechanisms, both directly via reactive oxygen species production and by decreased ATP synthesis and energy failure. Melatonin may have potential utility in the treatment of neurodegenerative disorders where oxidative stress is a participant.

Melatonin protects against 6-OHDA-induced neurotoxicity in rats: a role for mitochondrial complex I activity

DABBENI SALA, FEDERICA;GIUSTI, PIETRO
2001

Abstract

Unilateral injection into the right substantia nigra of the catecholaminergic neurotoxin 6-hydroxydopamine (6-OHDA) produces extensive loss of dopaminergic cells ('hemi-parkinsonian rat'). The pineal hormone melatonin, which is a potent antioxidant against different reactive oxygen species and has been reported to be neuroprotective in vivo and in vitro, was evaluated for potential anti-Parkinson effects in this model. Imbalance in dopaminergic innervation between the striata produced by intranigral administration of 6-OHDA results in a postural asymmetry causing rotation away from the nonlesioned side. Melatonin given systemically prevented apomorphine-induced circling behavior in 6-OHDA-lesioned rats. Reduced activity of mitochondrial oxidative phosphorylation enzymes has been suggested in some neurodegenerative diseases; in particular, selective decrease in complex I activity is observed in the substantia nigra of Parkinson's disease patients. Analysis of mitochondrial oxidative phosphorylation enzyme activities in nigral tissue from 6-OHDA-lesioned rats by a novel BN-PAGE histochemical procedure revealed a clear loss of complex I activity, which was protected against in melatonin-treated animals. A good correlation between behavioral parameters and enzymatic (complex I) analysis was observed independent of melatonin administration. A deficit in mitochondrial complex I could conceivably contribute to cell death in parkinsonism via free radical mechanisms, both directly via reactive oxygen species production and by decreased ATP synthesis and energy failure. Melatonin may have potential utility in the treatment of neurodegenerative disorders where oxidative stress is a participant.
2001
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2460829
Citazioni
  • ???jsp.display-item.citation.pmc??? 34
  • Scopus 178
  • ???jsp.display-item.citation.isi??? 162
social impact