Protein kinase CK2 is a heterotetrameric alpha2beta2 Ser/Thr protein kinase with some features unusual among the eukaryotic protein kinases: (1) CK2 recognizes phosphoacceptor sites specified by several acidic determinants; (2) CK2 can use both ATP and GTP as phosphoryl donors; and (3) the regulatory properties of CK2 are poorly understood; it is insensitive to any known second messenger and displays high basal activity. To gain insight into CK2 regulation and to understand its unusual properties, site-directed mutagenesis experiments on both subunits and X-ray crystallographic studies of the catalytic alpha-subunit were performed. The noncatalytic beta-subunit has at least three functions: (1) it protects the alpha-subunit against denaturing agents or conditions; (2) it alters the substrate specificity of the alpha-subunit; and (3) it modulates the activity of the enzyme, i.e., depending on the substrate, it increases or decreases the activity of the alpha-subunit. Mutagenesis experiments revealed that an acidic stretch between amino acids 55 and 64 has a down-regulatory and autoinhibitory function. Mutational analysis of the alpha-subunit has revealed a network of unique basic residues that are responsible for the recognition of phosphoacceptor substrates and for down-regulation by the beta-subunit and by polyanionic inhibitors. The resolution of the crystal structure of Zea mays CK2 alpha-subunit has disclosed the structural features that are responsible for high basal activity and for unusual response to nucleotide analogs. The increasing knowledge of CK2 structure-function relationships will allow the design of highly selective inhibitors of this pleiotropic kinase with oncogenic potential.

CK2: a protein kinase in need of control

SARNO, STEFANIA;CESARO, LUCA;PINNA, LORENZO
1999

Abstract

Protein kinase CK2 is a heterotetrameric alpha2beta2 Ser/Thr protein kinase with some features unusual among the eukaryotic protein kinases: (1) CK2 recognizes phosphoacceptor sites specified by several acidic determinants; (2) CK2 can use both ATP and GTP as phosphoryl donors; and (3) the regulatory properties of CK2 are poorly understood; it is insensitive to any known second messenger and displays high basal activity. To gain insight into CK2 regulation and to understand its unusual properties, site-directed mutagenesis experiments on both subunits and X-ray crystallographic studies of the catalytic alpha-subunit were performed. The noncatalytic beta-subunit has at least three functions: (1) it protects the alpha-subunit against denaturing agents or conditions; (2) it alters the substrate specificity of the alpha-subunit; and (3) it modulates the activity of the enzyme, i.e., depending on the substrate, it increases or decreases the activity of the alpha-subunit. Mutagenesis experiments revealed that an acidic stretch between amino acids 55 and 64 has a down-regulatory and autoinhibitory function. Mutational analysis of the alpha-subunit has revealed a network of unique basic residues that are responsible for the recognition of phosphoacceptor substrates and for down-regulation by the beta-subunit and by polyanionic inhibitors. The resolution of the crystal structure of Zea mays CK2 alpha-subunit has disclosed the structural features that are responsible for high basal activity and for unusual response to nucleotide analogs. The increasing knowledge of CK2 structure-function relationships will allow the design of highly selective inhibitors of this pleiotropic kinase with oncogenic potential.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2460933
Citazioni
  • ???jsp.display-item.citation.pmc??? 19
  • Scopus 86
  • ???jsp.display-item.citation.isi??? 80
social impact