This paper presents an efficient discrete Fourier transform (DFT) approach based upon an eigenvalue decomposition method. The work is based on some recent results on DFT eigenvectors, expressed exactly (not numerically) with simple exponential terms, with a considerable number of elements constrained to 0, and with a high degree of symmetry. The result provides a generalization of known fast Fourier transform (FFT) algorithms based upon a divide-and-conquer approach. Moreover, it can have interesting applications in the context of fractional Fourier transforms, where it provides an efficient implementation

Efficient DFT architectures based upon symmetries

ERSEGHE, TOMASO;CARIOLARO, GIANFRANCO
2006

Abstract

This paper presents an efficient discrete Fourier transform (DFT) approach based upon an eigenvalue decomposition method. The work is based on some recent results on DFT eigenvectors, expressed exactly (not numerically) with simple exponential terms, with a considerable number of elements constrained to 0, and with a high degree of symmetry. The result provides a generalization of known fast Fourier transform (FFT) algorithms based upon a divide-and-conquer approach. Moreover, it can have interesting applications in the context of fractional Fourier transforms, where it provides an efficient implementation
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11577/2463131
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact