A Synechocystis 6803 mutant carrying a chimaeric photosystem II (PSII), in which the Zen mays PsbH subunit (7.7 kDa calculated molecular mass) replaces the cyanobacterial copy (7.0 kDa), was constructed. With the exception of the N-terminal 12 amino acid extension, which has a phosphorylatable threonine, the eukaryotic polypeptide is 78% homologous to its bacterial counterpart. Biochemical characterization of this mutant shows that it expresses the engineered gene correctly and is competent for photoautotrophic growth. Fluorescence analysis and oxygen evolution measurements in the presence of exogenous accepters indicate that the observed phenotype results from a chimaeric PSII rather than from the absence of function associated with PsbH, suggesting that the heterologous protein is assembled into a functional PSII. Inhibition of oxygen evolution by herbicides belonging to different classes shows that the sensitivity of the mutant PSII is changed only towards phenolic compounds. This result indicates slight conformational modification of the Q(B)/herbicide binding pocket of the D1 polypeptide caused by the bulky PsbH protein in the mutant, and also suggests close structural interaction of the D1 and PsbH subunits in the topological arrangement of PSII.

Construction and characterization of a functional mutant of Synechocystis 6803 harbouring a eukaryotic PSII-H subunit.

GIACOMETTI, GIORGIO;BERGANTINO, ELISABETTA
1999

Abstract

A Synechocystis 6803 mutant carrying a chimaeric photosystem II (PSII), in which the Zen mays PsbH subunit (7.7 kDa calculated molecular mass) replaces the cyanobacterial copy (7.0 kDa), was constructed. With the exception of the N-terminal 12 amino acid extension, which has a phosphorylatable threonine, the eukaryotic polypeptide is 78% homologous to its bacterial counterpart. Biochemical characterization of this mutant shows that it expresses the engineered gene correctly and is competent for photoautotrophic growth. Fluorescence analysis and oxygen evolution measurements in the presence of exogenous accepters indicate that the observed phenotype results from a chimaeric PSII rather than from the absence of function associated with PsbH, suggesting that the heterologous protein is assembled into a functional PSII. Inhibition of oxygen evolution by herbicides belonging to different classes shows that the sensitivity of the mutant PSII is changed only towards phenolic compounds. This result indicates slight conformational modification of the Q(B)/herbicide binding pocket of the D1 polypeptide caused by the bulky PsbH protein in the mutant, and also suggests close structural interaction of the D1 and PsbH subunits in the topological arrangement of PSII.
1999
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2463198
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 24
social impact