Abstract Vascular endothelial growth factor (VEGF) is involved in the pathogenesis of diabetic retinopathy but its role in diabetic nephropathy is only speculative so far. It has been shown that in renal cortex of normal kidneys, glomerular and tubular epithelial cells express VEGF and that VEGF 165 is the predominant isoform. Two VEGF receptors, KDR (kinase domain region) and Flt-1 (fms-like tyrosine kinase) are co-expressed by glomerular and peritubular capillary endothelial cells. However, VEGF and VEGF receptors are predominantly expressed at glomerular level. We recently demonstrated that in type 2 diabetic patients glomerular qualitative and quantitative changes of VEGF mRNA expression are associated with functional and structural renal changes. In the present work we focused on the tubulo-interstitial compartment; by reverse transcription/polymerase chain reaction (RT/PCR) we evaluated the expression of VEGF, KDR, Flt-1 and the relationship between the two main type of VEGF isoforms, VEGF121 and VEGF165 in the tubulo-interstitium of type 2 diabetic patients. Patients were divided in three category on the basis of renal structure pattern: CI, with normal or near normal renal structure; CII, with glomerular and tubulo-interstitial lesions occurring in parallel (typical diabetic nephropathology); CIII, with atypical pattern of renal injury, i.e., more severe tubulo-interstitial and vascular than glomerular changes. Comparison between the two cortical compartments revealed that, both in glomeruli and in tubulo-interstitium. VEGF121 isoform exceed VEGF165 while Flt-1 was significantly lower in glomeruli. CIII patients had the lowest tubulo-interstitial level of VEGF and Flt-1 mRNAs. These results suggest that the transcriptional shifting from VEGF165 to VEGF121 isoform and the unbalanced FIt-1 expression between tubulo-interstitium and glomeruli could be involved in the pathogenesis of diabetic nephropathy. Furthermore, at least in CIII patients, down-regulation of the VEGF-Flt-1 system could be involved in the mechanisms leading to tubulointerstitial diabetic lesions.

Vascular endothelial growth factor (VEGF) and VEGF receptors in diabetic nephropathy: expression studies in biopsies of type 2 diabetic patients

BORTOLOSO, ELENA;DEL PRETE, DORELLA;SALLER, ALOIS;BAGGIO, BRUNO;FIORETTO, PAOLA;ANGLANI, FRANCA
2001

Abstract

Abstract Vascular endothelial growth factor (VEGF) is involved in the pathogenesis of diabetic retinopathy but its role in diabetic nephropathy is only speculative so far. It has been shown that in renal cortex of normal kidneys, glomerular and tubular epithelial cells express VEGF and that VEGF 165 is the predominant isoform. Two VEGF receptors, KDR (kinase domain region) and Flt-1 (fms-like tyrosine kinase) are co-expressed by glomerular and peritubular capillary endothelial cells. However, VEGF and VEGF receptors are predominantly expressed at glomerular level. We recently demonstrated that in type 2 diabetic patients glomerular qualitative and quantitative changes of VEGF mRNA expression are associated with functional and structural renal changes. In the present work we focused on the tubulo-interstitial compartment; by reverse transcription/polymerase chain reaction (RT/PCR) we evaluated the expression of VEGF, KDR, Flt-1 and the relationship between the two main type of VEGF isoforms, VEGF121 and VEGF165 in the tubulo-interstitium of type 2 diabetic patients. Patients were divided in three category on the basis of renal structure pattern: CI, with normal or near normal renal structure; CII, with glomerular and tubulo-interstitial lesions occurring in parallel (typical diabetic nephropathology); CIII, with atypical pattern of renal injury, i.e., more severe tubulo-interstitial and vascular than glomerular changes. Comparison between the two cortical compartments revealed that, both in glomeruli and in tubulo-interstitium. VEGF121 isoform exceed VEGF165 while Flt-1 was significantly lower in glomeruli. CIII patients had the lowest tubulo-interstitial level of VEGF and Flt-1 mRNAs. These results suggest that the transcriptional shifting from VEGF165 to VEGF121 isoform and the unbalanced FIt-1 expression between tubulo-interstitium and glomeruli could be involved in the pathogenesis of diabetic nephropathy. Furthermore, at least in CIII patients, down-regulation of the VEGF-Flt-1 system could be involved in the mechanisms leading to tubulointerstitial diabetic lesions.
2001
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2463295
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 15
social impact