We report on the growth by metalorganic vapour phase epitaxy of high structural and optical quality ZnS, ZnSe and ZnS/ZnSe multiple quantum well (MQW) based heterostructures for applications to laser diodes operating in the 400 nm spectral region. High purity (BuSH)-Bu-t, (Bu2Se)-Bu-t and the adduct Me2Zn : Et3N were used as precursors of S, Se and Zn, respectively. The effect of the different MOVPE growth parameters on the growth rates and structural properties of the epilayers is reported, showing that the crystallinity of both ZnS and ZnSe is limited by the kinetics of the incorporation of Zn, S and Se species at the growing surface. Very good structural and optical quality ZnS and ZnSe epilayers are obtained under optimized growth conditions, for which also dominant (excitonic) band-edge emissions are reported. The excellent ZnS and ZnSe obtained by our MOVPE growth matches the stringent requirements needed to achieve high quality ZnS/ZnSe MQWs. Their structural properties under optimized MOVPE conditions are shown to be limited mostly by the formation of microtwins, a result of the intrinsic high lattice mismatch involved into the ZnS/ZnSe heterostructure. Despite the large amount of defects found, the optical quality of the MQWs turned out to be high, which made possible the full characterization of their electronic and lasing properties. In particular, photopumped lasing emission up to 50 K in the 3.0 eV energy region are reported for the present MQWs heterostructures under power excitation density above 100 kW/cm(2).

MOVPE growth of wide band-gap II-VI compounds for near-UV and deep-blue light emitting devices

ROMANATO, FILIPPO;DRIGO, ANTONIO
1998

Abstract

We report on the growth by metalorganic vapour phase epitaxy of high structural and optical quality ZnS, ZnSe and ZnS/ZnSe multiple quantum well (MQW) based heterostructures for applications to laser diodes operating in the 400 nm spectral region. High purity (BuSH)-Bu-t, (Bu2Se)-Bu-t and the adduct Me2Zn : Et3N were used as precursors of S, Se and Zn, respectively. The effect of the different MOVPE growth parameters on the growth rates and structural properties of the epilayers is reported, showing that the crystallinity of both ZnS and ZnSe is limited by the kinetics of the incorporation of Zn, S and Se species at the growing surface. Very good structural and optical quality ZnS and ZnSe epilayers are obtained under optimized growth conditions, for which also dominant (excitonic) band-edge emissions are reported. The excellent ZnS and ZnSe obtained by our MOVPE growth matches the stringent requirements needed to achieve high quality ZnS/ZnSe MQWs. Their structural properties under optimized MOVPE conditions are shown to be limited mostly by the formation of microtwins, a result of the intrinsic high lattice mismatch involved into the ZnS/ZnSe heterostructure. Despite the large amount of defects found, the optical quality of the MQWs turned out to be high, which made possible the full characterization of their electronic and lasing properties. In particular, photopumped lasing emission up to 50 K in the 3.0 eV energy region are reported for the present MQWs heterostructures under power excitation density above 100 kW/cm(2).
File in questo prodotto:
File Dimensione Formato  
MOVPE Growth of Wide Band-Gap II VI compounds for near UV and deep-blue LEDs.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Accesso gratuito
Dimensione 284.62 kB
Formato Adobe PDF
284.62 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2464124
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 33
  • OpenAlex ND
social impact