A thermoresponsive polymer, N-isopropylacrylamide-co-acrylamide (Mn 6 kDa) with a lower critical solution temperature (LCST) of 37 degrees C, was activated and conjugated to avidin to yield a derivative with 200 kDa molecular weight. Gel permeation analysis demonstrated that the new bioconjugate possessed an apparent size corresponding to a 220 kDa globular protein. Photon correlation spectroscopy and turbidometric studies showed that the bioconjugate underwent temperature dependent phase transitions. The protein-co-polymer bioconjugate displayed the same onset phase transition temperature (LCST) as the original synthetic co-polymer. Nevertheless, the aggregation profile of the bioconjugate shifted at higher temperature as compared to the original polymer. This indicated that the aggregation behaviour coil-to-globule transition of the co-polymer was modified by anchoring to the protein surface. Circular dichroism analysis showed that the co-polymer conjugation did not alter the protein tertiary structure tertiary the aromatic amino acid environment. The bioconjugate maintained 85+/-3% of native avidin affinity for biotin and biotin-Mab, and high affinity was maintained after three heating cycles. Pharmacokinetic studies demonstrated that the co-polymer bioconjugation increased the avidin residence time in the bloodstream. The distribution phase of avidin-co-polymer was longer than the native protein by a factor of 20. The co-polymer conjugation decreased by three-fold the distribution extent of avidin and reduced significantly its up-take to the liver.

Avidin bioconjugate with a thermoresponsive polymer for biological and pharmaceutical applications

SALMASO, STEFANO;BERSANI, SARA;CALICETI, PAOLO
2007

Abstract

A thermoresponsive polymer, N-isopropylacrylamide-co-acrylamide (Mn 6 kDa) with a lower critical solution temperature (LCST) of 37 degrees C, was activated and conjugated to avidin to yield a derivative with 200 kDa molecular weight. Gel permeation analysis demonstrated that the new bioconjugate possessed an apparent size corresponding to a 220 kDa globular protein. Photon correlation spectroscopy and turbidometric studies showed that the bioconjugate underwent temperature dependent phase transitions. The protein-co-polymer bioconjugate displayed the same onset phase transition temperature (LCST) as the original synthetic co-polymer. Nevertheless, the aggregation profile of the bioconjugate shifted at higher temperature as compared to the original polymer. This indicated that the aggregation behaviour coil-to-globule transition of the co-polymer was modified by anchoring to the protein surface. Circular dichroism analysis showed that the co-polymer conjugation did not alter the protein tertiary structure tertiary the aromatic amino acid environment. The bioconjugate maintained 85+/-3% of native avidin affinity for biotin and biotin-Mab, and high affinity was maintained after three heating cycles. Pharmacokinetic studies demonstrated that the co-polymer bioconjugation increased the avidin residence time in the bloodstream. The distribution phase of avidin-co-polymer was longer than the native protein by a factor of 20. The co-polymer conjugation decreased by three-fold the distribution extent of avidin and reduced significantly its up-take to the liver.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2467993
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 20
social impact