The production of engineered three-dimensional (3D) skeletal muscle grafts holds promise for treatment of several diseases. An important factor in the development of such approach involves the capability of preserving myogenicity and regenerative potential during ex vivo culturing. We have previously shown that electrical stimulation of myogenic cells grown in monolayer could improve the differentiation process. Here we investigated the effect of exogenous electrical field, specifically designed to mimic part of the neuronal activity, on muscle precursor cells (MPCs) cultured within 3D collagen scaffolds. Our data showed that electric stimulation did not affect cell viability and increased by 65.6% the release rate of NOx, an early molecular activator of satellite cells in vivo. NOx release rate was decreased by an inhibitor of NO synthase, both in stimulated and non-stimulated cultures, confirming the endocrine origin of the measured NOx. Importantly, electrical stimulation also increased the expression of two myogenic markers, MyoD and desmin. We also carried out some preliminary experiments aimed at determining the biocompatibility of our seeded collagen scaffolds, implanting them in the tibialis anterior muscles of syngeneic mice. Ten days after transplantation, we could observe the formation of new myofibers both inside the scaffold and at the scaffold/muscle interface. Altogether, our findings indicate that electrical stimulation could be a new strategy for the effective 3D expansion of muscle precursor cells in vitro without losing myogenic potential and that 3D collagen matrices could be a promising tool for delivering myogenic cells in recipient muscles

Electrophysiologic stimulation improves myogenic potential of muscle precursor cells grown in a 3D collagen scaffold

SERENA, ELENA;FLAIBANI, MARINA;CARNIO, SILVIA;BOLDRIN, LUISA;VITIELLO, LIBERO;DE COPPI, PAOLO;ELVASSORE, NICOLA
2008

Abstract

The production of engineered three-dimensional (3D) skeletal muscle grafts holds promise for treatment of several diseases. An important factor in the development of such approach involves the capability of preserving myogenicity and regenerative potential during ex vivo culturing. We have previously shown that electrical stimulation of myogenic cells grown in monolayer could improve the differentiation process. Here we investigated the effect of exogenous electrical field, specifically designed to mimic part of the neuronal activity, on muscle precursor cells (MPCs) cultured within 3D collagen scaffolds. Our data showed that electric stimulation did not affect cell viability and increased by 65.6% the release rate of NOx, an early molecular activator of satellite cells in vivo. NOx release rate was decreased by an inhibitor of NO synthase, both in stimulated and non-stimulated cultures, confirming the endocrine origin of the measured NOx. Importantly, electrical stimulation also increased the expression of two myogenic markers, MyoD and desmin. We also carried out some preliminary experiments aimed at determining the biocompatibility of our seeded collagen scaffolds, implanting them in the tibialis anterior muscles of syngeneic mice. Ten days after transplantation, we could observe the formation of new myofibers both inside the scaffold and at the scaffold/muscle interface. Altogether, our findings indicate that electrical stimulation could be a new strategy for the effective 3D expansion of muscle precursor cells in vitro without losing myogenic potential and that 3D collagen matrices could be a promising tool for delivering myogenic cells in recipient muscles
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11577/2468465
Citazioni
  • ???jsp.display-item.citation.pmc??? 20
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 44
social impact