Abstract: Glycyrrhetinic acid (GA) is a hydrolytic product of the triterpene glycoside of glycyrrhizic acid, one of the main constituents of licorice root, which has long been studied, due to its several biological and endocrine properties. In this paper, GA was tested on human erythrocytes, and GA-induced alterations were compared with those Caused by diamide, a mild oxidant inducing well-characterized cell/membrane alterations, and n-ethylmaleimide (NEM), as alkylating agent. In order to verify the biochemical steps underlying the action of GA, band 3 Tyr-phosphorylation level, enzyme recruitment and hand 3 clustering in cells pre-incubated with GA before diamide treatment were all examined. Results show that GA, in a close-dependent manner, prevents both diamide and NEM-induced band 3 Tyr-phosphorylation, but not GSH decrease caused by both compounds. In addition, diamide-induced band 3 clustering and IgG binding to altered cells were also completely reversed by GA pre-treatment. Also, when membrane sensitivity toward proteolytic digestion was tested, GA-treated cells showed high resistance to proteolysis. In conclusion, ill human erythrocytes, GA is proposed to Strengthen membrane integrity against both oxidative and proteolytic damage.

Effect of glycyrrhetinic acid on membrane band 3 in human erythrocytes.

BORDIN, LUCIANA;ARMANINI, DECIO;CLARI, GIULIO
2008

Abstract

Abstract: Glycyrrhetinic acid (GA) is a hydrolytic product of the triterpene glycoside of glycyrrhizic acid, one of the main constituents of licorice root, which has long been studied, due to its several biological and endocrine properties. In this paper, GA was tested on human erythrocytes, and GA-induced alterations were compared with those Caused by diamide, a mild oxidant inducing well-characterized cell/membrane alterations, and n-ethylmaleimide (NEM), as alkylating agent. In order to verify the biochemical steps underlying the action of GA, band 3 Tyr-phosphorylation level, enzyme recruitment and hand 3 clustering in cells pre-incubated with GA before diamide treatment were all examined. Results show that GA, in a close-dependent manner, prevents both diamide and NEM-induced band 3 Tyr-phosphorylation, but not GSH decrease caused by both compounds. In addition, diamide-induced band 3 clustering and IgG binding to altered cells were also completely reversed by GA pre-treatment. Also, when membrane sensitivity toward proteolytic digestion was tested, GA-treated cells showed high resistance to proteolysis. In conclusion, ill human erythrocytes, GA is proposed to Strengthen membrane integrity against both oxidative and proteolytic damage.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2469025
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact