Detergent-free rat brain outer mitochondrial membranes were incorporated in planar lipid bilayers in the presence of an osmotic gradient, and studied at high (1 M KCl) and low (150 mM KCl) ionic strength solutions. By comparison, the main outer mitochondrial membrane protein, VDAC, extracted from rat liver with Triton X-100, was also studied in 150 mM KCl. In 1 M KCl, brain outer membranes gave rise to electrical patterns which resembled very closely those widely described for detergent-extracted VDAC, with transitions to several subconducting states upon increase of the potential difference, and sensitivity to polyanion. The potential dependence of the conductance of the outer membrane, however, was steeper and the extent of closure higher than that observed previously for rat brain VDAC. In 150 mM KCl, bilayers containing only one channel had a conductance of 700 +/- 23 pS for rat brain outer membranes, and 890 +/- 29 pS for rat liver VDAC. Use of a fast time resolution setup allowed demonstration of open-close transitions in the millisecond range, which were independent of the salt concentration and of the protein origin. We also found that a potential difference higher than approx. +/- 60 mV induced an almost irreversible decrease of the single channel conductance to few percentages of the full open state and a change in the ionic selectivity. These results show that the behavior of the outer mitochondrial membrane in planar bilayers is close to that detected with the patch clamp (Moran et al., 1992, Eur. Biophys. J. 20:311-319). The neurotoxicological action of aluminum was studied in single outer membrane channels from rat brain mitochondria. We found that microM concentrations of Al Cl3 and aluminum lactate decreased the conductance by about 50%, when the applied potential difference was positive relative to the side of the metal addition

Reconstitution of the native mitochondrial outer membrane in planar bilayers. Comparison with the outer membrane in a patch pipette and effect of aluminium compounds.

BALLARIN, CRISTINA;SORGATO, MARIA CATIA
1993

Abstract

Detergent-free rat brain outer mitochondrial membranes were incorporated in planar lipid bilayers in the presence of an osmotic gradient, and studied at high (1 M KCl) and low (150 mM KCl) ionic strength solutions. By comparison, the main outer mitochondrial membrane protein, VDAC, extracted from rat liver with Triton X-100, was also studied in 150 mM KCl. In 1 M KCl, brain outer membranes gave rise to electrical patterns which resembled very closely those widely described for detergent-extracted VDAC, with transitions to several subconducting states upon increase of the potential difference, and sensitivity to polyanion. The potential dependence of the conductance of the outer membrane, however, was steeper and the extent of closure higher than that observed previously for rat brain VDAC. In 150 mM KCl, bilayers containing only one channel had a conductance of 700 +/- 23 pS for rat brain outer membranes, and 890 +/- 29 pS for rat liver VDAC. Use of a fast time resolution setup allowed demonstration of open-close transitions in the millisecond range, which were independent of the salt concentration and of the protein origin. We also found that a potential difference higher than approx. +/- 60 mV induced an almost irreversible decrease of the single channel conductance to few percentages of the full open state and a change in the ionic selectivity. These results show that the behavior of the outer mitochondrial membrane in planar bilayers is close to that detected with the patch clamp (Moran et al., 1992, Eur. Biophys. J. 20:311-319). The neurotoxicological action of aluminum was studied in single outer membrane channels from rat brain mitochondria. We found that microM concentrations of Al Cl3 and aluminum lactate decreased the conductance by about 50%, when the applied potential difference was positive relative to the side of the metal addition
1993
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2470628
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 29
social impact