We consider the dyadic model, which is a toy model to test issues of well-posedness and blow-up for the Navier-Stokes and Euler equations. We prove well-posedness of positive solutions of the viscous problem in the relevant scaling range which corresponds to Navier-Stokes. Likewise we prove well-posedness for the inviscid problem (in a suitable regularity class) when the parameter corresponds to the strongest transport effect of the nonlinearity.
Smooth solutions for the dyadic model
BARBATO, DAVID;
2011
Abstract
We consider the dyadic model, which is a toy model to test issues of well-posedness and blow-up for the Navier-Stokes and Euler equations. We prove well-posedness of positive solutions of the viscous problem in the relevant scaling range which corresponds to Navier-Stokes. Likewise we prove well-posedness for the inviscid problem (in a suitable regularity class) when the parameter corresponds to the strongest transport effect of the nonlinearity.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.