We show that over any ring, the double Ext-orthogonal class to all flat Mittag-Leffler modules contains all countable direct limits of flat Mittag-Leffler modules. If the ring is countable, then the double orthogonal class consists precisely of all flat modules, and we deduce, using a recent result of Saroch and Trlifaj, that the class of flat Mittag-Leffler modules is not precovering in Mod -R unless R is right perfect.
Flat Mittag-Leffler modules over countable rings
BAZZONI, SILVANA;
2012
Abstract
We show that over any ring, the double Ext-orthogonal class to all flat Mittag-Leffler modules contains all countable direct limits of flat Mittag-Leffler modules. If the ring is countable, then the double orthogonal class consists precisely of all flat modules, and we deduce, using a recent result of Saroch and Trlifaj, that the class of flat Mittag-Leffler modules is not precovering in Mod -R unless R is right perfect.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
S0002-9939-2011-11070-0.pdf
accesso aperto
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Accesso gratuito
Dimensione
155.97 kB
Formato
Adobe PDF
|
155.97 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




