The final slip of about 450 m at about 30 m/s of the 1963 Vaiont landslide (Italy) was preceded by >3 year long creeping phase which was localized in centimeter-thick clay-rich layers (60-70% smectites, 20-30% calcite and quartz). Here we investigate the frictional properties of the clay-rich layers under similar deformation conditions as during the landslide: 1-5 MPa normal stress, 2 x 10(-7) to 1.31 m/s slip rate and displacements up to 34 m. Experiments were performed at room humidity and wet conditions with biaxial, torsion and rotary shear apparatus. The clay-rich gouge was velocity-independent to velocity-weakening in both room humidity and wet conditions. In room humidity experiments, the coefficient of friction decreased from 0.47 at v < 5.0 x 10(-5) m/s to 0.12 at 1.31 m/s. Microstructural and mineralogical analyses of the gouge after experiments indicate that the dramatic weakening results from thermo-chemical pressurization of pore fluids (smectite decomposition to illite-type clays) and powder lubrication. In wet experiments, the coefficient of friction decreased from 0.17 at v < 1.0 x 10(-4) m/s to 0.0 at v > 0.70 m/s: full lubrication results from the formation of a continuous water film in the gouge. The Vaiont landslide occurred under wet to saturated conditions. The unstable behavior of the landslide is explained by the velocity-weakening behavior of the Vaiont clay-rich gouges. The formation of a continuous film of liquid water in the slipping zone reduced the coefficient of friction to almost zero, even without invoking the activation of thermal pressurization. This explains the extraordinary high velocity achieved by the slide during the final collapse.

Low-to high-velocity frictional properties of the clay-rich gouges from the slipping zone of the 1963 Vaiont slide (Northern Italy)

FERRI, FABIO;DI TORO, GIULIO;QUARESIMIN, MARINO;DE ROSSI, NICOLA
2011

Abstract

The final slip of about 450 m at about 30 m/s of the 1963 Vaiont landslide (Italy) was preceded by >3 year long creeping phase which was localized in centimeter-thick clay-rich layers (60-70% smectites, 20-30% calcite and quartz). Here we investigate the frictional properties of the clay-rich layers under similar deformation conditions as during the landslide: 1-5 MPa normal stress, 2 x 10(-7) to 1.31 m/s slip rate and displacements up to 34 m. Experiments were performed at room humidity and wet conditions with biaxial, torsion and rotary shear apparatus. The clay-rich gouge was velocity-independent to velocity-weakening in both room humidity and wet conditions. In room humidity experiments, the coefficient of friction decreased from 0.47 at v < 5.0 x 10(-5) m/s to 0.12 at 1.31 m/s. Microstructural and mineralogical analyses of the gouge after experiments indicate that the dramatic weakening results from thermo-chemical pressurization of pore fluids (smectite decomposition to illite-type clays) and powder lubrication. In wet experiments, the coefficient of friction decreased from 0.17 at v < 1.0 x 10(-4) m/s to 0.0 at v > 0.70 m/s: full lubrication results from the formation of a continuous water film in the gouge. The Vaiont landslide occurred under wet to saturated conditions. The unstable behavior of the landslide is explained by the velocity-weakening behavior of the Vaiont clay-rich gouges. The formation of a continuous film of liquid water in the slipping zone reduced the coefficient of friction to almost zero, even without invoking the activation of thermal pressurization. This explains the extraordinary high velocity achieved by the slide during the final collapse.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2477047
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 102
  • ???jsp.display-item.citation.isi??? 86
  • OpenAlex ND
social impact