In the framework of the DISWall research project, funded by the European Commission, the authors have been working on the development of quality-assessment procedures for modern reinforced masonry buildings based on nondestructive testing methods. Two specific types of reinforced masonry systems were considered, both based on concentrated vertical reinforcements and on the use of perforatedclay units. This contribution focuses on results obtained by radar and sonic techniques. They were applied in the laboratory on two masonry specimens, which were built with known defects. Tests were also carried out on-site, on real walls of a selected case study. On the basis of the results of these experiments, a fully nondestructive quality-control procedure appears feasible and promising. The data can be collected and analyzed in real time with an automatic classification algorithm. The procedure requires the use of a high-frequency GPR (ground-penetrating radar) system. Depending on the type of masonry system, sonic test equipment might also be required to investigate some specific problems that cannot be diagnosed by the GPR. Feedback from the building sector is now essential to understand the interest in and the potential market for this nondestructive testing application. As a result, new investments could be planned to perform the further testing activities that are needed to standardize the procedure.

Non-destructive quality control of reinforced masonry buildings

DA PORTO, FRANCESCA;
2012

Abstract

In the framework of the DISWall research project, funded by the European Commission, the authors have been working on the development of quality-assessment procedures for modern reinforced masonry buildings based on nondestructive testing methods. Two specific types of reinforced masonry systems were considered, both based on concentrated vertical reinforcements and on the use of perforatedclay units. This contribution focuses on results obtained by radar and sonic techniques. They were applied in the laboratory on two masonry specimens, which were built with known defects. Tests were also carried out on-site, on real walls of a selected case study. On the basis of the results of these experiments, a fully nondestructive quality-control procedure appears feasible and promising. The data can be collected and analyzed in real time with an automatic classification algorithm. The procedure requires the use of a high-frequency GPR (ground-penetrating radar) system. Depending on the type of masonry system, sonic test equipment might also be required to investigate some specific problems that cannot be diagnosed by the GPR. Feedback from the building sector is now essential to understand the interest in and the potential market for this nondestructive testing application. As a result, new investments could be planned to perform the further testing activities that are needed to standardize the procedure.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2478791
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact