Let $\Lambda$ be the von Mangoldt function and \(R(n) = \sum_{h+k=n} \Lambda(h)\Lambda(k) \) be the counting function for the Goldbach numbers. Let $N \geq 2$ and assume that the Riemann Hypothdfesis holds. We prove that \[ \sum_{n=1}^{N} R(n) = \frac{N^{2}}{2} -2 \sum_{\rho} \frac{N^{\rho + 1}}{\rho (\rho + 1)} + \Odi{N \log^{3}N }, \] where $\rho=1/2+i\gamma$ runs over the non-trivial zeros of the Riemann Zeta-function $\zeta(s)$. This improves a recent result by Bhowmik and Schlage-Puchta.

The number of Goldbach representations of an integer

LANGUASCO, ALESSANDRO;
2012

Abstract

Let $\Lambda$ be the von Mangoldt function and \(R(n) = \sum_{h+k=n} \Lambda(h)\Lambda(k) \) be the counting function for the Goldbach numbers. Let $N \geq 2$ and assume that the Riemann Hypothdfesis holds. We prove that \[ \sum_{n=1}^{N} R(n) = \frac{N^{2}}{2} -2 \sum_{\rho} \frac{N^{\rho + 1}}{\rho (\rho + 1)} + \Odi{N \log^{3}N }, \] where $\rho=1/2+i\gamma$ runs over the non-trivial zeros of the Riemann Zeta-function $\zeta(s)$. This improves a recent result by Bhowmik and Schlage-Puchta.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2478948
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
social impact