Recent results reveal that the family of barycentric rational interpolants introduced by Floater and Hormann is very well-suited for the approximation of functions as well as their derivatives, integrals and primitives. Especially in the case of equidistant interpolation nodes, these infinitely smooth interpolants offer a much better choice than their polynomial analogue. A natural and important question concerns the condition of this rational approximation method. In this paper we extend a recent study of the Lebesgue function and constant associated with Berrut's rational interpolant at equidistant nodes to the family of Floater-Hormann interpolants, which includes the former as a special case.

On the Lebesgue constant of barycentric rational interpolation at equidistant nodes

DE MARCHI, STEFANO;
2012

Abstract

Recent results reveal that the family of barycentric rational interpolants introduced by Floater and Hormann is very well-suited for the approximation of functions as well as their derivatives, integrals and primitives. Especially in the case of equidistant interpolation nodes, these infinitely smooth interpolants offer a much better choice than their polynomial analogue. A natural and important question concerns the condition of this rational approximation method. In this paper we extend a recent study of the Lebesgue function and constant associated with Berrut's rational interpolant at equidistant nodes to the family of Floater-Hormann interpolants, which includes the former as a special case.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2479462
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 41
social impact