We rigorously prove that the semidiscrete schemes of a Perona-Malik type equation converge, in a long-time scale, to a suitable system of ordinary differential equations defined on piecewise constant functions. The proof is based on a formal asymptotic expansion argument, and on a careful construction of discrete comparison functions. Despite the equation having a region where it is backward parabolic, we prove a discrete comparison principle, which is the key tool for the convergence result.

Convergence for long-times of a semidiscrete Perona-Malik equation in one dimension

NOVAGA, MATTEO;
2011

Abstract

We rigorously prove that the semidiscrete schemes of a Perona-Malik type equation converge, in a long-time scale, to a suitable system of ordinary differential equations defined on piecewise constant functions. The proof is based on a formal asymptotic expansion argument, and on a careful construction of discrete comparison functions. Despite the equation having a region where it is backward parabolic, we prove a discrete comparison principle, which is the key tool for the convergence result.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2479998
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact