Bonding between fiber-reinforced polymer FRP sheets and concrete supports is essential in shear and flexural applications for transfer of stress between concrete structure and reinforcement. This paper aims at better understanding FRP–concrete bond behavior and at assessing some of the common formulations for effective bond length and bond–slip models tau-s by means of an extensive experimental program on 39 concrete specimens strengthened with various types and amounts of FRP strips and covering a wide range of FRP axial rigidities, subjected to both double-shear and bending tests. Effective bond length, maximum bond/shear stress, slip when bond stress peaks, and slip when bond stress falls to zero, were all experimentally measured. The influence of FRP stiffness on effective bond length and bond–slip behavior was observed. New expressions for (1) effective bond length; (2) maximum shear/bond stress; (3) slip at peak value of bond stress; and (4) slip at ultimate, taking into account the influence of FRP stiffness, are proposed.

Experimental study on bond behavior between concrete and FRP reinforcement

PELLEGRINO, CARLO;MODENA, CLAUDIO
2008

Abstract

Bonding between fiber-reinforced polymer FRP sheets and concrete supports is essential in shear and flexural applications for transfer of stress between concrete structure and reinforcement. This paper aims at better understanding FRP–concrete bond behavior and at assessing some of the common formulations for effective bond length and bond–slip models tau-s by means of an extensive experimental program on 39 concrete specimens strengthened with various types and amounts of FRP strips and covering a wide range of FRP axial rigidities, subjected to both double-shear and bending tests. Effective bond length, maximum bond/shear stress, slip when bond stress peaks, and slip when bond stress falls to zero, were all experimentally measured. The influence of FRP stiffness on effective bond length and bond–slip behavior was observed. New expressions for (1) effective bond length; (2) maximum shear/bond stress; (3) slip at peak value of bond stress; and (4) slip at ultimate, taking into account the influence of FRP stiffness, are proposed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2480047
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 140
  • ???jsp.display-item.citation.isi??? 114
social impact