The paper presents an energetic approach useful to predict of the static and fatigue behavior of components weakened by sharp re-entrant corners. Despite the fact that stresses and strain energy density tend toward infinity at the point of singularity, the energy in a small volume of material surrounding the notch tip has obviously a finite value and such a value is thought of as the entity that controls the failure. The energy, averaged in a volume of radius R (which depends on the material properties), is a precise function of the Notch Stress Intensity Factors and is given in closed form for plane stress and plane strain conditions, the material being thought of as isotropic and linear elastic. The method is validated taking into account experimental data already reported in the literature, concerning both static tests carried out on polymethyl metacrylate (PMMA) and Duraluminium specimens and fatigue tests on welded joints and notched components in structural steels. As a matter of fact, the method proposed here is the re-formulation, on one hand, of some recent area/volume criteria (in which averaged values of the maximum principal stress are used to predict component fatigue limits) and, on the other, of N-SIF-based criteria, where the Notch Stress Intensity Factors are thought of as the parameters that control static and fatigue failures.

A finite-volume-energy based approach to predict the static and fatigue behavior of components with sharp V-shaped notches

LAZZARIN, PAOLO;
2001

Abstract

The paper presents an energetic approach useful to predict of the static and fatigue behavior of components weakened by sharp re-entrant corners. Despite the fact that stresses and strain energy density tend toward infinity at the point of singularity, the energy in a small volume of material surrounding the notch tip has obviously a finite value and such a value is thought of as the entity that controls the failure. The energy, averaged in a volume of radius R (which depends on the material properties), is a precise function of the Notch Stress Intensity Factors and is given in closed form for plane stress and plane strain conditions, the material being thought of as isotropic and linear elastic. The method is validated taking into account experimental data already reported in the literature, concerning both static tests carried out on polymethyl metacrylate (PMMA) and Duraluminium specimens and fatigue tests on welded joints and notched components in structural steels. As a matter of fact, the method proposed here is the re-formulation, on one hand, of some recent area/volume criteria (in which averaged values of the maximum principal stress are used to predict component fatigue limits) and, on the other, of N-SIF-based criteria, where the Notch Stress Intensity Factors are thought of as the parameters that control static and fatigue failures.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2480185
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 752
  • ???jsp.display-item.citation.isi??? 667
social impact