The use of Liquefied Petroleum Gas (LPG) as fuel for spark ignition engines originally designed to be gasoline fuelled is common practice in many countries. Despite this, some questions remain still open. The present paper deals with the two main problems related to LPG port-fuel SI engines: the volumetric efficiency drop and the LPG evaporator device performance. A passengers car SI engine equipped with a “third generation” kit for the dual-fuel operation was tested using a dynamometer test rig. A single-stage pressure reducer was selected as LPG evaporator, to take advantage of an additional pre-heating of the liquid LPG that allows higher power output than a two-stage device of the same size. Engine performance, volumetric efficiency and change of LPG thermodynamic states in the evaporator were measured both in steady-state and transient operation of the engine. Steady-state measurements show the advantage of LPG in terms of engine efficiency, and quantify the drop in steady-state brake torque due to the volume swept by gaseous fuel in the fresh charge admission process. On the other hand, transient measurements show that a single-stage evaporator device is capable to match overall simplicity and satisfactory performance during strong changes in engine load.

Measure of the volumetric efficiency and evaporator device performance for a Liquefied Petroleum Gas SI engine

MASI, MASSIMO;GOBBATO, PAOLO
2012

Abstract

The use of Liquefied Petroleum Gas (LPG) as fuel for spark ignition engines originally designed to be gasoline fuelled is common practice in many countries. Despite this, some questions remain still open. The present paper deals with the two main problems related to LPG port-fuel SI engines: the volumetric efficiency drop and the LPG evaporator device performance. A passengers car SI engine equipped with a “third generation” kit for the dual-fuel operation was tested using a dynamometer test rig. A single-stage pressure reducer was selected as LPG evaporator, to take advantage of an additional pre-heating of the liquid LPG that allows higher power output than a two-stage device of the same size. Engine performance, volumetric efficiency and change of LPG thermodynamic states in the evaporator were measured both in steady-state and transient operation of the engine. Steady-state measurements show the advantage of LPG in terms of engine efficiency, and quantify the drop in steady-state brake torque due to the volume swept by gaseous fuel in the fresh charge admission process. On the other hand, transient measurements show that a single-stage evaporator device is capable to match overall simplicity and satisfactory performance during strong changes in engine load.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2480261
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 22
social impact