In arthropods, molting events are mediated by the binding of the ecdysone hormone to a heterodimer of two nuclear receptors: the ecdysone receptor (EcR) and the retinoid X receptor (RXR), a homolog of ultraspiracle (USP). We have cloned partial sequences of several isoforms for EcR and RXR genes from the centipede Lithobius peregrinus, and studied their expression profile during the second post-embryonic stage. LpEcR and LpRXR inferred amino acid sequences are very similar to other arthropod orthologs, especially to those of chelicerates and hemimetabolous insects, and their expression levels are significantly higher during the 48 h that precede the molt. Results obtained in this study represent the first data on the genetic basis of the ecdysone signal pathway for a myriapod, and in particular for an animal that, through a stereotyped developmental schedule paced by the molt cycle, completes trunk segmentation during post-embryonic life.

Cloning and expression pattern of the ecdysone receptor and retinoid X receptor from the centipede Lithobius peregrinus (Chilopoda, Lithobiomorpha)

BORTOLIN, FRANCESCA;CONGIU, LEONARDO;FUSCO, GIUSEPPE
2011

Abstract

In arthropods, molting events are mediated by the binding of the ecdysone hormone to a heterodimer of two nuclear receptors: the ecdysone receptor (EcR) and the retinoid X receptor (RXR), a homolog of ultraspiracle (USP). We have cloned partial sequences of several isoforms for EcR and RXR genes from the centipede Lithobius peregrinus, and studied their expression profile during the second post-embryonic stage. LpEcR and LpRXR inferred amino acid sequences are very similar to other arthropod orthologs, especially to those of chelicerates and hemimetabolous insects, and their expression levels are significantly higher during the 48 h that precede the molt. Results obtained in this study represent the first data on the genetic basis of the ecdysone signal pathway for a myriapod, and in particular for an animal that, through a stereotyped developmental schedule paced by the molt cycle, completes trunk segmentation during post-embryonic life.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2480545
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
social impact