Curved crystals, thanks to the electrostatic potential generated by the coherent atomic structure, may deflect ultrarelativistic charged particles by means of channeling and volume reflection effects. Most of the experimental knowledge about these phenomena was gathered with Si crystals, though the performance could be improved by using materials with a larger atomic number. In this letter, we investigate planar and axial channeling and volume reflection in a high quality Ge short strip crystal. All the effects are demonstrated to occur in agreement with theoretical expectations, which take into account the stronger confinement potential for an ideal Ge crystal.

Steering of an ultrarelativistic proton beam by a bent germanium crystal

DE SALVADOR, DAVIDE;CARTURAN, SARA MARIA;BAZZAN, MARCO;ARGIOLAS, NICOLA;CARNERA, ALBERTO;
2011

Abstract

Curved crystals, thanks to the electrostatic potential generated by the coherent atomic structure, may deflect ultrarelativistic charged particles by means of channeling and volume reflection effects. Most of the experimental knowledge about these phenomena was gathered with Si crystals, though the performance could be improved by using materials with a larger atomic number. In this letter, we investigate planar and axial channeling and volume reflection in a high quality Ge short strip crystal. All the effects are demonstrated to occur in agreement with theoretical expectations, which take into account the stronger confinement potential for an ideal Ge crystal.
2011
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2480712
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
  • OpenAlex ND
social impact