Gold(III)-dithiocarbamato complexes have recently gained increasing attention as potential anticancer agents because of their strong tumor cell growth--inhibitory effects, generally achieved by exploiting non-cisplatin-like mechanisms of action. The rationale of our research work is to combine the antitumor properties of the gold(III) metal center with the potential chemoprotective function of coordinated dithiocarbamates in order to reduce toxic side effects (in particular nephrotoxicity) induced by clinically established platinum-based drugs. In this context, [Au(III) Br(2) (ESDT)] (AUL12) was proved to exert promising and outstanding antitumor activity in vitro and to overcome both acquired and intrinsic resistance showed by some types of tumors toward cisplatin. As a subsequent extension of our previous work, we here report on detailed in vivo studies in rodents, including antitumor activity toward three transplantable murine tumor models, toxicity, nephrotoxicity and histopathological investigations. Remarkably, the gold(III) complex AUL12 stands out for higher anticancer activity than cisplatin toward all the murine tumor models examined, inducing up to 80% inhibition of tumor growth. In addition, it shows low acute toxicity levels (lethal dose, LD(50) = 30 mg kg(-1) ) and reduced nephrotoxicity. Altogether, these results confirm the reliability of our drug design strategy and support the validation of this gold(III)-dithiocarbamato derivative as a suitable candidate for clinical trials.

Gold(III)-dithiocarbamato anticancer agents: activity, toxicology and histopathological studies in rodents

Marzano, Cristina;Ronconi, Luca;Chiara, Federica;Giron, Maria Cecilia;Trevisan, Andrea;Fregona, Dolores
2011

Abstract

Gold(III)-dithiocarbamato complexes have recently gained increasing attention as potential anticancer agents because of their strong tumor cell growth--inhibitory effects, generally achieved by exploiting non-cisplatin-like mechanisms of action. The rationale of our research work is to combine the antitumor properties of the gold(III) metal center with the potential chemoprotective function of coordinated dithiocarbamates in order to reduce toxic side effects (in particular nephrotoxicity) induced by clinically established platinum-based drugs. In this context, [Au(III) Br(2) (ESDT)] (AUL12) was proved to exert promising and outstanding antitumor activity in vitro and to overcome both acquired and intrinsic resistance showed by some types of tumors toward cisplatin. As a subsequent extension of our previous work, we here report on detailed in vivo studies in rodents, including antitumor activity toward three transplantable murine tumor models, toxicity, nephrotoxicity and histopathological investigations. Remarkably, the gold(III) complex AUL12 stands out for higher anticancer activity than cisplatin toward all the murine tumor models examined, inducing up to 80% inhibition of tumor growth. In addition, it shows low acute toxicity levels (lethal dose, LD(50) = 30 mg kg(-1) ) and reduced nephrotoxicity. Altogether, these results confirm the reliability of our drug design strategy and support the validation of this gold(III)-dithiocarbamato derivative as a suitable candidate for clinical trials.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2480813
Citazioni
  • ???jsp.display-item.citation.pmc??? 16
  • Scopus 93
  • ???jsp.display-item.citation.isi??? 87
social impact