Optimal geometrical arrangements, such as the stacking of atoms, are of relevance in diverse disciplines(1-5). A classic problem is the determination of the optimal arrangement of spheres in three dimensions in order to achieve the highest packing fraction; only recently has it been proved(1,2) that the answer for infinite systems is a face-centred-cubic lattice. This simply stated problem has had a profound impact in many areas(3-5), ranging from the crystallization and melting of atomic systems, to optimal packing of objects and the sub-division of space. Here we study an analogous problem-that of determining the optimal shapes of closely packed compact strings. This problem is a mathematical idealization of situations commonly encountered in biology, chemistry and physics, involving the optimal structure of folded polymeric chains. We find that, in cases where boundary effects(6) are not dominant, helices with a particular pitch-radius ratio are selected. Interestingly, the same geometry is observed in helices in naturally occurring proteins.

Optimal shapes of compact strings

MARITAN, AMOS;TROVATO, ANTONIO;
2000

Abstract

Optimal geometrical arrangements, such as the stacking of atoms, are of relevance in diverse disciplines(1-5). A classic problem is the determination of the optimal arrangement of spheres in three dimensions in order to achieve the highest packing fraction; only recently has it been proved(1,2) that the answer for infinite systems is a face-centred-cubic lattice. This simply stated problem has had a profound impact in many areas(3-5), ranging from the crystallization and melting of atomic systems, to optimal packing of objects and the sub-division of space. Here we study an analogous problem-that of determining the optimal shapes of closely packed compact strings. This problem is a mathematical idealization of situations commonly encountered in biology, chemistry and physics, involving the optimal structure of folded polymeric chains. We find that, in cases where boundary effects(6) are not dominant, helices with a particular pitch-radius ratio are selected. Interestingly, the same geometry is observed in helices in naturally occurring proteins.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2481397
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 238
  • ???jsp.display-item.citation.isi??? 236
social impact