The interaction of a 2 MeV proton beam with an ultrathin unbent Si crystal was studied through simulation and experiment. Crystal thickness along the beam was set at 92 nm, i.e., at half the oscillation wavelength of the protons in the crystal under planar channeling condition. As the nominal beam direction is inclined by less than the critical angle for planar channeling with respect to the crystal planes, under-barrier particles undergo half an oscillation and exit the crystal with the reversal of the transverse momenta; i.e., the protons are "mirrored" by the crystal planes. Over-barrier particles suffer deflection, too, to a direction opposite that of mirroring with a dynamics similar to that of volume reflection in a bent crystal. On the strength of such coherent interactions, charged particle beams can be efficiently steered through an ultrathin unbent crystal by the same physical processes as for thicker bent crystals.
Deflection of MeV Protons by an Unbent Half-Wavelength Silicon Crystal
DE SALVADOR, DAVIDE;BACCI, LUCA
2012
Abstract
The interaction of a 2 MeV proton beam with an ultrathin unbent Si crystal was studied through simulation and experiment. Crystal thickness along the beam was set at 92 nm, i.e., at half the oscillation wavelength of the protons in the crystal under planar channeling condition. As the nominal beam direction is inclined by less than the critical angle for planar channeling with respect to the crystal planes, under-barrier particles undergo half an oscillation and exit the crystal with the reversal of the transverse momenta; i.e., the protons are "mirrored" by the crystal planes. Over-barrier particles suffer deflection, too, to a direction opposite that of mirroring with a dynamics similar to that of volume reflection in a bent crystal. On the strength of such coherent interactions, charged particle beams can be efficiently steered through an ultrathin unbent crystal by the same physical processes as for thicker bent crystals.File | Dimensione | Formato | |
---|---|---|---|
PRL_guidi.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Accesso libero
Dimensione
762.04 kB
Formato
Adobe PDF
|
762.04 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.