Previous observations showed that complexes of glucose-regulated protein94 (Grp94) with human IgG, both those isolated from plasma of diabetic subjects and complexes formed in vitro, displayed cytokine-like effects on human umbilical vein endothelial cells (HUVECs), including angiogenic-like transformation capacity that predicted an increased risk of vascular damage. The aim of the present work was to find an effective inhibitor of the angiogenic-like effect of Grp94-IgG complexes. Because this effect is mediated by an increased expression of matrix metalloprotease-9 (MMP-9), we tested the selective MMP-9 inhibitor, the cyclic decapeptide CTT (CTTHWGFTLC) at 5, 10 and 20 μM. CCT failed to inhibit any morphological alteration induced by Grp94-IgG on HUVECs, on its own displaying a paradoxical angiogenic-like activity. We identified the phosphatidylinositol 3-kinase (PI3K)/Akt pathway as the specific target activated by both Grp94-IgG and CTT for sustaining the angiogenic-like transformation of HUVECs. Functioning of the PI3K/Akt pathway was crucially dependent on functional heat-shock protein (HSP)90, and both Grp94-IgG and CTT caused and increased expression of HSP90, promoting its localization to podosomes. CTT appeared to enhance the angiogenic-like effect of Grp94-IgG by increasing the rate of secretion of both HSP90 and MMP-9. By preventing the chaperoning capacity of HSP90 with the inhibitor purine-scaffold (PU)-H71 that blocked the ATP-binding site on HSP90, it was possible to inhibit the expression of Akt and secretion of HSP90 and MMP-9 induced by Grp94-IgG, thus completely reversing the angiogenic pattern. Results reveal a fundamental role of HSP90 in the PI3K/Akt pathway-mediated angiogenic-like effect of Grp94-IgG, also questioning the capacity of CTT to serve as an effective inhibitor of the angiogenic effect.

Crucial role of HSP90 in the Akt-dependent promotion of angiogenic-like effect of Glucose-regulated protein94 (Grp94)-IgG complexes

TRAMENTOZZI, ELISA;TIBALDI, ELENA;BRUNATI, ANNA MARIA;PAGETTA, ANDREA;FINOTTI, PAOLA
2011

Abstract

Previous observations showed that complexes of glucose-regulated protein94 (Grp94) with human IgG, both those isolated from plasma of diabetic subjects and complexes formed in vitro, displayed cytokine-like effects on human umbilical vein endothelial cells (HUVECs), including angiogenic-like transformation capacity that predicted an increased risk of vascular damage. The aim of the present work was to find an effective inhibitor of the angiogenic-like effect of Grp94-IgG complexes. Because this effect is mediated by an increased expression of matrix metalloprotease-9 (MMP-9), we tested the selective MMP-9 inhibitor, the cyclic decapeptide CTT (CTTHWGFTLC) at 5, 10 and 20 μM. CCT failed to inhibit any morphological alteration induced by Grp94-IgG on HUVECs, on its own displaying a paradoxical angiogenic-like activity. We identified the phosphatidylinositol 3-kinase (PI3K)/Akt pathway as the specific target activated by both Grp94-IgG and CTT for sustaining the angiogenic-like transformation of HUVECs. Functioning of the PI3K/Akt pathway was crucially dependent on functional heat-shock protein (HSP)90, and both Grp94-IgG and CTT caused and increased expression of HSP90, promoting its localization to podosomes. CTT appeared to enhance the angiogenic-like effect of Grp94-IgG by increasing the rate of secretion of both HSP90 and MMP-9. By preventing the chaperoning capacity of HSP90 with the inhibitor purine-scaffold (PU)-H71 that blocked the ATP-binding site on HSP90, it was possible to inhibit the expression of Akt and secretion of HSP90 and MMP-9 induced by Grp94-IgG, thus completely reversing the angiogenic pattern. Results reveal a fundamental role of HSP90 in the PI3K/Akt pathway-mediated angiogenic-like effect of Grp94-IgG, also questioning the capacity of CTT to serve as an effective inhibitor of the angiogenic effect.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2483552
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact