Here we study the discrete lot-sizing problem with an initial stock variable and an associated variable upper bound constraint. This problem is of interest in its own right, and is also a natural relaxation of the constant capacity lot-sizing problem with upper bounds and fixed charges on the stock variables. We show that the convex hull of solutions of the discrete lot-sizing problem is obtained as the intersection of two simpler sets, one a pure integer set and the other a mixing set with a variable upper bound constraint. For these two sets we derive both inequality descriptions and polynomial-size extended formulations of their respective convex hulls. Finally we carry out some limited computational tests on single-item constant capacity lot-sizing problems with upper bounds and fixed charges on the stock variables in which we use the extended formulations derived above to strengthen the initial mixed-integer programming formulations.

Lot-sizing with stock upper bounds and fixed charges

DI SUMMA, MARCO;
2010

Abstract

Here we study the discrete lot-sizing problem with an initial stock variable and an associated variable upper bound constraint. This problem is of interest in its own right, and is also a natural relaxation of the constant capacity lot-sizing problem with upper bounds and fixed charges on the stock variables. We show that the convex hull of solutions of the discrete lot-sizing problem is obtained as the intersection of two simpler sets, one a pure integer set and the other a mixing set with a variable upper bound constraint. For these two sets we derive both inequality descriptions and polynomial-size extended formulations of their respective convex hulls. Finally we carry out some limited computational tests on single-item constant capacity lot-sizing problems with upper bounds and fixed charges on the stock variables in which we use the extended formulations derived above to strengthen the initial mixed-integer programming formulations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2484395
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact