A variety of stimuli utilize an increase of cytosolic free Ca(2+) concentration as a second messenger to transmit signals, through Ca(2+) release from the endoplasmic reticulum or opening of plasma membrane Ca(2+) channels. Mitochondria contribute to the tight spatiotemporal control of this process by accumulating Ca(2+), thus shaping the return of cytosolic Ca(2+) to resting levels. The rise of mitochondrial matrix free Ca(2+) concentration stimulates oxidative metabolism; yet, in the presence of a variety of sensitizing factors of pathophysiological relevance, the matrix Ca(2+) increase can also lead to opening of the permeability transition pore (PTP), a high conductance inner membrane channel. While transient openings may serve the purpose of providing a fast Ca(2+) release mechanism, persistent PTP opening is followed by deregulated release of matrix Ca(2+), termination of oxidative phosphorylation, matrix swelling with inner membrane unfolding and eventually outer membrane rupture with release of apoptogenic proteins and cell death. Thus, a rise in mitochondrial Ca(2+) can convey both apoptotic and necrotic death signals by inducing opening of the PTP. Understanding the signalling networks that govern changes in mitochondrial free Ca(2+) concentration, their interplay with Ca(2+) signalling in other subcellular compartments, and regulation of PTP has important implications in the fine comprehension of the main biological routines of the cell and in disease pathogenesis.

Mitochondrial permeability transition in Ca(2+)-dependent apoptosis and necrosis

RASOLA, ANDREA;BERNARDI, PAOLO
2011

Abstract

A variety of stimuli utilize an increase of cytosolic free Ca(2+) concentration as a second messenger to transmit signals, through Ca(2+) release from the endoplasmic reticulum or opening of plasma membrane Ca(2+) channels. Mitochondria contribute to the tight spatiotemporal control of this process by accumulating Ca(2+), thus shaping the return of cytosolic Ca(2+) to resting levels. The rise of mitochondrial matrix free Ca(2+) concentration stimulates oxidative metabolism; yet, in the presence of a variety of sensitizing factors of pathophysiological relevance, the matrix Ca(2+) increase can also lead to opening of the permeability transition pore (PTP), a high conductance inner membrane channel. While transient openings may serve the purpose of providing a fast Ca(2+) release mechanism, persistent PTP opening is followed by deregulated release of matrix Ca(2+), termination of oxidative phosphorylation, matrix swelling with inner membrane unfolding and eventually outer membrane rupture with release of apoptogenic proteins and cell death. Thus, a rise in mitochondrial Ca(2+) can convey both apoptotic and necrotic death signals by inducing opening of the PTP. Understanding the signalling networks that govern changes in mitochondrial free Ca(2+) concentration, their interplay with Ca(2+) signalling in other subcellular compartments, and regulation of PTP has important implications in the fine comprehension of the main biological routines of the cell and in disease pathogenesis.
2011
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2484681
Citazioni
  • ???jsp.display-item.citation.pmc??? 204
  • Scopus 429
  • ???jsp.display-item.citation.isi??? 401
social impact