A concept of compositional reverse-grading (RG) in SiGe/Si heteroepitaxy has been proposed, in which the graded layer lattice mismatch starts at the highest value at the RG/Si interface and decreases to a final mismatch at the SiGe/RG interface. Using various characterization techniques, the authors show that this low-dislocation-density strain relaxation mechanism relies on the large nucleation rates of misfit dislocations at the abrupt RG/Si interface and the reduction of threading dislocations at the SiGe/RG interface by facilitating glide. The RG concept enables the growth of high-quality relaxed epitaxial layer on a thin buffer layer, suitable as a substrate for many microelectronic and optoelectronic applications.

Strain relaxation mechanism in a reverse compositionally graded SiGe heterostructure

ROMANATO, FILIPPO;
2007

Abstract

A concept of compositional reverse-grading (RG) in SiGe/Si heteroepitaxy has been proposed, in which the graded layer lattice mismatch starts at the highest value at the RG/Si interface and decreases to a final mismatch at the SiGe/RG interface. Using various characterization techniques, the authors show that this low-dislocation-density strain relaxation mechanism relies on the large nucleation rates of misfit dislocations at the abrupt RG/Si interface and the reduction of threading dislocations at the SiGe/RG interface by facilitating glide. The RG concept enables the growth of high-quality relaxed epitaxial layer on a thin buffer layer, suitable as a substrate for many microelectronic and optoelectronic applications.
2007
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2486164
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 15
social impact