Deprivation-induced proteolysis in the perfused rat liver is controlled through the multiphasic action of 7 regulatory amino acids of which L-leucine plays the dominant role. Recently, isovaleryl-L-carnitine (IVC) was shown to mimic the leucine's effects, suggesting that the two molecules share structural features that are recognized at a common site(s). In this study we find that each evokes identical responses consisting of inhibitory effects at 0.08 and 0.8 mM, separated by a sharp zonal loss of inhibition at 0.15 mM. As monitored by density shifts of beta-hexosaminidase in colloidal silica gradients, macroautophagy is suppressed by both. Responses to Leu and IVC at 0.08 and 0.15 mM are stereospecific and require a reactive group at the alpha-carbon (or equivalent) and a high degree of branched chain specificity. In addition, 0.5 mM Ala coregulates with IVC and Leu by decreasing the zonal loss at 0.15 mM. The fact that the multiphasic responses can be duplicated with equimolar mixtures of Leu + IVC indicates that both react at the same site(s). IVC is readily taken up by a saturable process, but owing to its rapid hydrolysis in the cell, the ratio of internal to external IVC remains low over a 4-fold concentration range. These findings, together with a kinetic analysis of concerted responses to regulatory amino acids, suggest that the recognition sites are at a position in the cell, possibly at the plasma membrane, to react reversibly with plasma amino acids.

Control of hepatic proteolysis by leucine and isovaleryl-L-carnitine through a common locus. Evidence for a possible mechanism of recognition at the plasma membrane.

MIOTTO, GIOVANNI;VENERANDO, RINA;
1992

Abstract

Deprivation-induced proteolysis in the perfused rat liver is controlled through the multiphasic action of 7 regulatory amino acids of which L-leucine plays the dominant role. Recently, isovaleryl-L-carnitine (IVC) was shown to mimic the leucine's effects, suggesting that the two molecules share structural features that are recognized at a common site(s). In this study we find that each evokes identical responses consisting of inhibitory effects at 0.08 and 0.8 mM, separated by a sharp zonal loss of inhibition at 0.15 mM. As monitored by density shifts of beta-hexosaminidase in colloidal silica gradients, macroautophagy is suppressed by both. Responses to Leu and IVC at 0.08 and 0.15 mM are stereospecific and require a reactive group at the alpha-carbon (or equivalent) and a high degree of branched chain specificity. In addition, 0.5 mM Ala coregulates with IVC and Leu by decreasing the zonal loss at 0.15 mM. The fact that the multiphasic responses can be duplicated with equimolar mixtures of Leu + IVC indicates that both react at the same site(s). IVC is readily taken up by a saturable process, but owing to its rapid hydrolysis in the cell, the ratio of internal to external IVC remains low over a 4-fold concentration range. These findings, together with a kinetic analysis of concerted responses to regulatory amino acids, suggest that the recognition sites are at a position in the cell, possibly at the plasma membrane, to react reversibly with plasma amino acids.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11577/2488345
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 41
social impact