The problem of clock offset estimation in a two-way timing message exchange regime is considered when the likelihood function of the observation time stamps is Gaussian, exponential, or log-normally distributed. A parameterized solution to the maximum likelihood (ML) estimation of clock offset is analytically obtained, which differs from the earlier approaches where the likelihood function is maximized graphically. In order to capture the imperfections in node oscillators, which may render a time-varying nature to the clock offset, a novel Bayesian approach to the clock offset estimation is proposed by using a factor graph representation of the posterior density. Message passing using the max-product algorithm yields an exact expression for the Bayesian inference problem. Several lower bounds on the variance of an estimator are derived for arbitrary exponential family distributed likelihood functions which, while serving as stepping stones to benchmark the performance of the proposed clock offset estimators, can be useful in their own right in classical as well Bayesian parameter estimation theory. To corroborate the theoretical findings, extensive simulation results are discussed for classical as well as Bayesian estimators in various scenarios. It is observed that the performance of the proposed estimators is fairly close to the fundamental limits established by the lower bounds.

A Factor Graph Approach to Clock Offset Estimation in Wireless Sensor Networks

VANGELISTA, LORENZO
2012

Abstract

The problem of clock offset estimation in a two-way timing message exchange regime is considered when the likelihood function of the observation time stamps is Gaussian, exponential, or log-normally distributed. A parameterized solution to the maximum likelihood (ML) estimation of clock offset is analytically obtained, which differs from the earlier approaches where the likelihood function is maximized graphically. In order to capture the imperfections in node oscillators, which may render a time-varying nature to the clock offset, a novel Bayesian approach to the clock offset estimation is proposed by using a factor graph representation of the posterior density. Message passing using the max-product algorithm yields an exact expression for the Bayesian inference problem. Several lower bounds on the variance of an estimator are derived for arbitrary exponential family distributed likelihood functions which, while serving as stepping stones to benchmark the performance of the proposed clock offset estimators, can be useful in their own right in classical as well Bayesian parameter estimation theory. To corroborate the theoretical findings, extensive simulation results are discussed for classical as well as Bayesian estimators in various scenarios. It is observed that the performance of the proposed estimators is fairly close to the fundamental limits established by the lower bounds.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2497788
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 30
social impact