Spontaneous calcium release from purified light sarcoplasmic reticulum has been previously described (Palade, P., Mitchell, R. D., and Fleischer, S. (1983) J. Biol. Chem. 258, 8098-8107 ) and found to be distinct from several other forms of Ca2+ release. Ca2+ release occurs after a lag period following active Ca2+ preloading and depletion of extravesicular Ca2+. In the present study, we find that local anesthetics inhibit spontaneous Ca2+ release, in a time-dependent manner, varying considerably in the preincubation time required to exert maximal effect. At pH 7.0, hydrophilic and mostly charged local anesthetics, such as procaine, procainamide, and N-(2,6-dimethylphenyl carbamoyl methyl)triethyl ammonium bromide, inhibit Ca2+ release only after long preincubations (hours), whereas more hydrophobic local anesthetics are effective after only a short incubation (minutes) with sarcoplasmic reticulum. The more hydrophobic anesthetics take somewhat longer to reach equilibrium, as studied by inhibition of unidirectional Ca2+ efflux, and there is a direct relationship between hydrophobic partition coefficient and half-time to reach equilibrium. Agents known to inhibit permeability pathways for monovalent cations i.e. K+ channel blockers (decamethonium and n-dodecane-1, 12-N,N,N,N',N',N'-hexamethyl-bis-ammonium) or the anion blocker (4,4'-diisothiocyanostilbene-2,2'-disulfonic acid), do not inhibit spontaneous Ca2+ release. Carbonyl cyanide m-fluorophenylhydrazone, a protonophore, and gramicidin D, a monovalent cation ionophore, have no effect on Ca2+ release whether local anesthetics are present or not, while the Ca2+ ionophore A23187 relieves inhibition of Ca2+ release by local anesthetics. Ruthenium red does not inhibit spontaneous Ca2+ release. These findings suggest that the binding site(s) for local anesthetics is located on the inner face of the sarcoplasmic reticulum membrane and that local anesthetics interact directly with a Ca2+ channel rather than with other permeability pathways which might indirectly influence Ca2+ channel gating.

Spontaneous calcium release from sarcoplasmic reticulum. Effect of local anesthetics.

VOLPE, POMPEO;
1983

Abstract

Spontaneous calcium release from purified light sarcoplasmic reticulum has been previously described (Palade, P., Mitchell, R. D., and Fleischer, S. (1983) J. Biol. Chem. 258, 8098-8107 ) and found to be distinct from several other forms of Ca2+ release. Ca2+ release occurs after a lag period following active Ca2+ preloading and depletion of extravesicular Ca2+. In the present study, we find that local anesthetics inhibit spontaneous Ca2+ release, in a time-dependent manner, varying considerably in the preincubation time required to exert maximal effect. At pH 7.0, hydrophilic and mostly charged local anesthetics, such as procaine, procainamide, and N-(2,6-dimethylphenyl carbamoyl methyl)triethyl ammonium bromide, inhibit Ca2+ release only after long preincubations (hours), whereas more hydrophobic local anesthetics are effective after only a short incubation (minutes) with sarcoplasmic reticulum. The more hydrophobic anesthetics take somewhat longer to reach equilibrium, as studied by inhibition of unidirectional Ca2+ efflux, and there is a direct relationship between hydrophobic partition coefficient and half-time to reach equilibrium. Agents known to inhibit permeability pathways for monovalent cations i.e. K+ channel blockers (decamethonium and n-dodecane-1, 12-N,N,N,N',N',N'-hexamethyl-bis-ammonium) or the anion blocker (4,4'-diisothiocyanostilbene-2,2'-disulfonic acid), do not inhibit spontaneous Ca2+ release. Carbonyl cyanide m-fluorophenylhydrazone, a protonophore, and gramicidin D, a monovalent cation ionophore, have no effect on Ca2+ release whether local anesthetics are present or not, while the Ca2+ ionophore A23187 relieves inhibition of Ca2+ release by local anesthetics. Ruthenium red does not inhibit spontaneous Ca2+ release. These findings suggest that the binding site(s) for local anesthetics is located on the inner face of the sarcoplasmic reticulum membrane and that local anesthetics interact directly with a Ca2+ channel rather than with other permeability pathways which might indirectly influence Ca2+ channel gating.
1983
File in questo prodotto:
File Dimensione Formato  
JBC 1983b.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 1.24 MB
Formato Adobe PDF
1.24 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2500257
Citazioni
  • ???jsp.display-item.citation.pmc??? 13
  • Scopus 52
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact