Contraction of skeletal muscle is triggered by release of calcium from the sarcoplasmic reticulum. In this study, highly purified normal and dystrophic mouse sarcoplasmic reticulum vesicles were compared with respect to calcium release characteristics. Sarcoplasmic reticulum vesicles were actively loaded with calcium in the presence of an ATP-regenerating system. Calcium fluxes were followed by dual wavelength spectrophotometry using the metallochromic indicators antipyrylazo III and arsenazo III, and by isotopic techniques. Calcium release from sarcoplasmic reticulum vesicle was elicited by (a) changing the free calcium concentration of the assay medium (calcium-induced calcium release); (b) addition of a permeant anion to the assay medium, following calcium loading in the presence of a relatively impermeant anion (depolarization-induced calcium release); (c) addition of the lipophilic anion tetraphenylboron (TPB-) to the assay medium and (d) using specific experimental conditions, i.e. high phosphate levels and low magnesium (spontaneous calcium release). Drugs known to influence Ca2+ release were shown to differentially affect the various types of calcium release. Caffeine (10 mM) was found to enhance calcium-induced calcium release from isolated sarcoplasmic reticulum. Ruthenium red (20 microM) inhibited both calcium-induced calcium release and tetraphenylboron-induced calcium release, and partially inhibited spontaneous calcium release and depolarization-induced calcium release. Local anesthetics inhibited spontaneous calcium release in a time-dependent manner, and inhibited calcium-induced calcium release instantaneously, but did not inhibit depolarization-induced calcium release. Use of pharmacological agents indicates that several types of calcium release operate in vitro. No significant differences were found between normal and dystrophic sarcoplasmic reticulum in calcium release kinetics or drug sensitivities.

Calcium release from sarcoplasmic reticulum of normal and dystrophic mice.

VOLPE, POMPEO;
1984

Abstract

Contraction of skeletal muscle is triggered by release of calcium from the sarcoplasmic reticulum. In this study, highly purified normal and dystrophic mouse sarcoplasmic reticulum vesicles were compared with respect to calcium release characteristics. Sarcoplasmic reticulum vesicles were actively loaded with calcium in the presence of an ATP-regenerating system. Calcium fluxes were followed by dual wavelength spectrophotometry using the metallochromic indicators antipyrylazo III and arsenazo III, and by isotopic techniques. Calcium release from sarcoplasmic reticulum vesicle was elicited by (a) changing the free calcium concentration of the assay medium (calcium-induced calcium release); (b) addition of a permeant anion to the assay medium, following calcium loading in the presence of a relatively impermeant anion (depolarization-induced calcium release); (c) addition of the lipophilic anion tetraphenylboron (TPB-) to the assay medium and (d) using specific experimental conditions, i.e. high phosphate levels and low magnesium (spontaneous calcium release). Drugs known to influence Ca2+ release were shown to differentially affect the various types of calcium release. Caffeine (10 mM) was found to enhance calcium-induced calcium release from isolated sarcoplasmic reticulum. Ruthenium red (20 microM) inhibited both calcium-induced calcium release and tetraphenylboron-induced calcium release, and partially inhibited spontaneous calcium release and depolarization-induced calcium release. Local anesthetics inhibited spontaneous calcium release in a time-dependent manner, and inhibited calcium-induced calcium release instantaneously, but did not inhibit depolarization-induced calcium release. Use of pharmacological agents indicates that several types of calcium release operate in vitro. No significant differences were found between normal and dystrophic sarcoplasmic reticulum in calcium release kinetics or drug sensitivities.
1984
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2500271
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 53
social impact