The unknown interaction of the cutting tools with geological settings represents an interesting problem for the excavation machinery industry. To simplify the non-linear aspects involved in the numerical analysis of such phenomena a strategy for an accurate soil modelling has to be defined. A possible approach is the discrete one, by considering the soil as an assembly of rigid spheres. In this work this strategy is adopted. The basic idea is to concentrate at the contact level between the spheres the real mechanical behaviour of the soil. For this purpose suitable contact models have been developed, where specific elasto-plastic laws have been implemented in the node-to-segment contact formulation. The framework for the plastic behaviour consists of a failure criterion, a one-dimensional, rate-independent elasto-plastic flow rule for the normal and the tangential force and a non-linear yield criterion. The final aim of this paper is to develop mechanical models to study the behaviour of stiff soils and rocks under different loading conditions.

Modelling of cutting tool - soil interaction - Part I: Contact behaviour

SCHREFLER, BERNHARD
2004

Abstract

The unknown interaction of the cutting tools with geological settings represents an interesting problem for the excavation machinery industry. To simplify the non-linear aspects involved in the numerical analysis of such phenomena a strategy for an accurate soil modelling has to be defined. A possible approach is the discrete one, by considering the soil as an assembly of rigid spheres. In this work this strategy is adopted. The basic idea is to concentrate at the contact level between the spheres the real mechanical behaviour of the soil. For this purpose suitable contact models have been developed, where specific elasto-plastic laws have been implemented in the node-to-segment contact formulation. The framework for the plastic behaviour consists of a failure criterion, a one-dimensional, rate-independent elasto-plastic flow rule for the normal and the tangential force and a non-linear yield criterion. The final aim of this paper is to develop mechanical models to study the behaviour of stiff soils and rocks under different loading conditions.
2004
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2502040
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact